Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Stereotyped sunning behaviour in birds has been hypothesized to inhibit keratin-degrading bacteria but there is little evidence that solar irradiation affects community assembly and abundance of plumage microbiota. The monophyletic New World vultures (Cathartiformes) are renowned for scavenging vertebrate carrion, spread-wing sunning at roosts, and thermal soaring. Few avian species experience greater exposure to solar irradiation. We used 16S rRNA sequencing to investigate the plumage microbiota of wild individuals of five sympatric species of vultures in Guyana.
Results: The exceptionally diverse plumage microbiotas (631 genera of Bacteria and Archaea) were numerically dominated by bacterial genera resistant to ultraviolet (UV) light, desiccation, and high ambient temperatures, and genera known for forming desiccation-resistant endospores (phylum Firmicutes, order Clostridiales). The extremophile genera Deinococcus (phylum Deinococcus-Thermus) and Hymenobacter (phylum, Bacteroidetes), rare in vertebrate gut microbiotas, accounted for 9.1% of 2.7 million sequences (CSS normalized and log transformed). Five bacterial genera known to exhibit strong keratinolytic capacities in vitro (Bacillus, Enterococcus, Pseudomonas, Staphylococcus, and Streptomyces) were less abundant (totaling 4%) in vulture plumage.
Conclusions: Bacterial rank-abundance profiles from melanized vulture plumage have no known analog in the integumentary systems of terrestrial vertebrates. The prominence of UV-resistant extremophiles suggests that solar irradiation may play a significant role in the assembly of vulture plumage microbiotas. Our results highlight the need for controlled in vivo experiments to test the effects of UV on microbial communities of avian plumage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807431 | PMC |
http://dx.doi.org/10.1186/s42523-020-00043-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!