Background: Dietary intake is known to be a driver of microbial community dynamics in ruminants. Beef cattle go through a finishing phase that typically includes very high concentrate ratios in their feed, with consequent effects on rumen metabolism including methane production. This longitudinal study was designed to measure dynamics of the rumen microbial community in response to the introduction of high concentrate diets fed to beef cattle during the finishing period. A cohort of 50 beef steers were fed either of two basal diet formulations consisting of approximately 10:90 or 50:50 forage:concentrate ratios respectively. Nitrate and oil rich supplements were also added either individually or in combination. Digesta samples were taken at time points over ~ 200 days during the finishing period of the cattle to measure the adaptation to the basal diet and long-term stability of the rumen microbiota.

Results: 16S rRNA gene amplicon libraries were prepared from 313 rumen digesta samples and analysed at a depth of 20,000 sequences per library. Bray Curtis dissimilarity with analysis of molecular variance (AMOVA) revealed highly significant (p < 0.001) differences in microbiota composition between cattle fed different basal diets, largely driven by reduction of fibre degrading microbial groups and increased relative abundance of an unclassified Gammaproteobacteria OTU in the high concentrate fed animals. Conversely, the forage-based diet was significantly associated with methanogenic archaea. Within basal diet groups, addition of the nitrate and combined supplements had lesser, although still significant, impacts on microbiota dissimilarity compared to pre-treatment time points and controls. Measurements of the response and stability of the microbial community over the time course of the experiment showed continuing adaptation up to 25 days in the high concentrate groups. After this time point, however, no significant variability was detected.

Conclusions: High concentrate diets that are typically fed to finishing beef cattle can have a significant effect on the microbial community in the rumen. Inferred metabolic activity of the different microbial communities associated with each of the respective basal diets explained differences in methane and short chain fatty acid production between cattle. Longitudinal sampling revealed that once adapted to a change in diet, the rumen microbial community remains in a relatively stable alternate state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807515PMC
http://dx.doi.org/10.1186/s42523-019-0018-yDOI Listing

Publication Analysis

Top Keywords

beef cattle
12
stability rumen
8
microbial community
8
cattle finishing
8
high concentrate
8
finishing period
8
basal diet
8
digesta samples
8
rumen
5
temporal stability
4

Similar Publications

Phosphate has been widely used in beef to improve processing characteristics such as tenderness and water-holding capacity. However, the effects of phosphates on the quality and especially the flavor of beef are not well understood. This study investigated the influence of eight different phosphate marinade solutions on the quality and flavor of prepared beef.

View Article and Find Full Text PDF

Generation of Codon-Optimized Fad3 Gene Transgenic Bovine That Produce More n-3 Polyunsaturated Fatty Acids.

Animals (Basel)

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China.

Polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2, n-6) and α-linolenic acid (18:3, n-3) are essential for the growth, development, and well-being of mammals. However, most mammals, including humans, cannot synthesize n-3 and n-6 PUFAs and these must be obtained through diet. The beneficial effect of converting n-6 polyunsaturated fatty acids (n-6 PUFAs) into n-3 polyunsaturated fatty acids (n-3 PUFAs) has led to extensive research on the flax fatty acid desaturase 3 () gene, which encodes fatty acid desaturase.

View Article and Find Full Text PDF

Comparative Analysis of miRNA Expression Profiles of Yak Milk-Derived Exosomes at Different Altitudes.

Animals (Basel)

January 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing.

View Article and Find Full Text PDF

Genome-Wide Scans for Selection Signatures in Ningxia Angus Cattle Reveal Genetic Variants Associated with Economic and Adaptive Traits.

Animals (Basel)

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The genetic improvement of beef cattle breeds is crucial for the advancement of the beef cattle industry. Whole-genome resequencing technology has been widely applied in genetic breeding as well as research on selection signatures in beef cattle. In this study, 20× whole-genome resequencing was performed on 282 Angus cattle from the Ningxia region, and a high-quality dataset encompassing extensive genomic variations across the entire genome was constructed.

View Article and Find Full Text PDF

In intensive beef production systems, social dominance relationships among cattle and human-cattle relationships constantly affect cattle welfare. However, these factors have not been investigated to assess their long-term effects on cattle welfare. In this study, the relations of hair cortisol concentrations of group-housed pregnant cows with their social rank and avoidance distance when approached by humans were analysed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!