Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Prognostic models developed in general cohorts with a mixture of heart failure (HF) phenotypes, though more widely applicable, are also likely to yield larger prediction errors in settings where the HF phenotypes have substantially different baseline mortality rates or different predictor-outcome associations. This study sought to use individual participant data meta-analysis to develop an HF phenotype stratified model for predicting 1-year mortality in patients admitted with acute HF.
Methods: Four prospective European cohorts were used to develop an HF phenotype stratified model. Cox model with two rounds of backward elimination was used to derive the prognostic index. Weibull model was used to obtain the baseline hazard functions. The internal-external cross-validation (IECV) approach was used to evaluate the generalizability of the developed model in terms of discrimination and calibration.
Results: 3577 acute HF patients were included, of which 2368 were classified as having HF with reduced ejection fraction (EF) (HFrEF; EF < 40%), 588 as having HF with midrange EF (HFmrEF; EF 40-49%), and 621 as having HF with preserved EF (HFpEF; EF ≥ 50%). A total of 11 readily available variables built up the prognostic index. For four of these predictor variables, namely systolic blood pressure, serum creatinine, myocardial infarction, and diabetes, the effect differed across the three HF phenotypes. With a weighted IECV-adjusted AUC of 0.79 (0.74-0.83) for HFrEF, 0.74 (0.70-0.79) for HFmrEF, and 0.74 (0.71-0.77) for HFpEF, the model showed excellent discrimination. Moreover, there was a good agreement between the average observed and predicted 1-year mortality risks, especially after recalibration of the baseline mortality risks.
Conclusions: Our HF phenotype stratified model showed excellent generalizability across four European cohorts and may provide a useful tool in HF phenotype-specific clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839199 | PMC |
http://dx.doi.org/10.1186/s12916-020-01894-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!