AI Article Synopsis

  • * In a 17-week study with obese mice, the combination of CECT 7771 and WBE was found to be the most effective in reducing weight gain and fat, with CECT 7771 playing a significant role in improving glucose metabolism.
  • * This combination also enhanced immune responses in the gut and reduced inflammation, suggesting it could be a promising strategy for combating obesity and related health issues.

Article Abstract

Gut microbiota represents a therapeutic target for obesity. We hypothesize that CECT 7771 combined with wheat bran extract (WBE), its preferred carbon source, may exert superior anti-obesity effects. We performed a 17-week intervention in diet-induced obese mice receiving either , WBE, or their combination to identify interactions and independent actions on metabolism and immunity. combined with WBE was the most effective intervention, curbing weight gain and adiposity, while exerting more modest effects separately. The combination restored insulin-dependent metabolic routes in fat and liver, although the bacterium was the primary driver for improving whole-body glucose disposal. Moreover, -combined with WBE caused the highest increases in butyrate and restored the proportion of induced intraepithelial lymphocytes and type-3 innate lymphoid cells in the intestinal epithelium. Thus, strengthening the first line of immune defense against unhealthy diets and associated dysbiosis in the intestine. This intervention also attenuated the altered IL22 signaling and liver inflammation. Our study shows opportunities for employing , combined with WBE, to aid in the treatment of obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018257PMC
http://dx.doi.org/10.1080/19490976.2020.1865706DOI Listing

Publication Analysis

Top Keywords

obese mice
8
combined wbe
8
wbe
5
combined
4
combined fiber
4
fiber amplifies
4
amplifies metabolic
4
metabolic immune
4
immune benefits
4
benefits obese
4

Similar Publications

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Fighting Fire with Fire: Impact of Sugary Diets on Metabolically Deranged Mice.

Nutrients

December 2024

Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA.

There is controversy about the health risks of sugary diets. A recent study reported that chronic consumption of 11% sugar solutions improved glycemic control in lean mice. Based on this finding, we hypothesized that chronic consumption of the same 11% sugar solutions would also improve glycemic control in metabolically deranged mice.

View Article and Find Full Text PDF

Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.

Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).

View Article and Find Full Text PDF

Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells ameliorate diet-induced obesity by activating thermogenesis and alleviating inflammation in adipose tissue.

Biochem Biophys Res Commun

December 2024

Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China. Electronic address:

Obesity and its related metabolic disorders seriously threaten our health and significantly reduce our life expectancy. The aim of the present study was to explore the effects of bone marrow mesenchymal stem cells (BMSCs) on high-fat diet (HFD)-induced obesity mice. The results demonstrated that BMSCs significantly reduced body weight, improved glucose tolerance and insulin sensitivity in obese mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!