The breaking of molecular bonds during exposure to ionizing radiation and electron beams creates irreversible damage in the molecular structure. In some cases, such as lithography, controlled damage of a molecular resist is a desirable process and is the basis for the entire semiconductor industry. In other cases, such as environmental exposure or probing of the molecular structure, the induced damage is a major problem that has limited advances in science and technology. We report here the use of an in situ probe that is minimally invasive to detect real-time damage induced in organic materials. Specifically, we use metastable excited helium atoms in the S state to characterize the damage caused by a low-energy electron beam ∼30 eV on an organic self-assembled monolayer of 11-bromo-1-undecanethiol on a gold substrate. We were able to monitor the damage caused by the electron beam without introducing any additional observed damage by the probing metastable atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0036827DOI Listing

Publication Analysis

Top Keywords

metastable excited
8
excited helium
8
helium atoms
8
damage molecular
8
molecular structure
8
damage caused
8
electron beam
8
damage
7
monitoring damage
4
damage self-assembled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!