The study of ion specificities of charged-neutral random copolymers is of great importance for understanding specific ion effects on natural macromolecules. In the present work, we have investigated the specific anion effects on the thermoresponsive behavior of poly([2-(methacryloyloxy)ethyl trimethylammonium chloride]---isopropylacrylamide) [P(METAC--NIPAM)] random copolymers. Our study demonstrates that the anion specificities of the P(METAC--NIPAM) copolymers are dependent on their chemical compositions. The specific anion effects on the copolymers with high mole fractions of poly(-isopropylacrylamide) (PNIPAM) are similar to those on the PNIPAM homopolymer. As the mole fraction of PNIPAM decreases to a certain value, a V-shaped anion series can be observed in terms of the anion-specific cloud point temperature of the copolymer, as induced by the interplay between different anion-polymer interactions. Our study also suggests that both the direct and the indirect anion-polymer interactions contribute to the anion specificities of the copolymers. This work would improve our understanding of the relationship between the ion specificities and the ion-macromolecule interactions for naturally occurring macromolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02907 | DOI Listing |
J Coll Physicians Surg Pak
January 2025
Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan.
Objective: To evaluate Chicago Sky Blue (CSB) stain, Calcofluor white (CW) stain, and Potassium Hydroxide (KOH) mount for rapid diagnosis of dermatomycosis, using fungal culture as the gold standard.
Study Design: Cross-sectional analytical study. Place and Duration of the Study: This study was conducted in the Department of Microbiology, Armed Forces Institute of Pathology / National University of Medical Sciences, Rawalpindi, Pakistan, from July 2023 to February 2024.
Mol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!