For the first time, the design, screening, and validation of potent GSK-3β type-II inhibitors are presented. In the absence of crystallographic evidence for a DFG-out GSK-3β activation loop conformation, computational models were designed using an adapted DOLPHIN approach and a method consisting of Prime loop refinement, induced-fit docking, and molecular dynamics. Virtual screening of the Biogenics subset from the ZINC database led to an initial selection of 20 Phase I compounds revealing two low micromolar inhibitors in an isolated enzyme assay. Twenty more analogues (Phase II compounds) related to the hit [pyrimidin-2-yl]amino-furo[3,2-]furyl-urea scaffold were selected for structure-activity relationship analysis. The Phase II studies led to five highly potent nanomolar inhibitors, with compound (IC =0.087 μM) > 100 times more potent than the best Phase I inhibitor, and selectivity for GSK-3β inhibition compared to homologous kinases was observed. experiments (SH-SY5Y cell lines) for tau hyperphosphorylation revealed promising neuroprotective effects at low micromolar concentrations. The type-II inhibitor design has been unraveled as a potential route toward more clinically effective GSK-3β inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.0c01568 | DOI Listing |
Cureus
November 2024
Dermatology, The Oxford Medical College, Hospital, and Research Centre, Bangalore, IND.
Leprosy is a chronic, infectious, and debilitating disorder that primarily affects the skin and peripheral nerves. The disease course may be complicated by immune-mediated reactions during or after therapy, which may further worsen nerve damage. Type II lepra reaction (T2LR) is a painful inflammatory condition with systemic features, such as fever, tender erythematous nodules, arthritis, neuritis, orchitis, lymphadenitis, and iritis.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
December 2024
Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY.
In the past decade, the treatment paradigm for chronic lymphocytic leukemia (CLL) has markedly shifted from traditional chemoimmunotherapy towards targeted therapies. A fixed-duration, targeted regimen with venetoclax, a potent oral BCL-2 inhibitor, combined with obinutuzumab, a glycoengineered type II anti-CD20 monoclonal antibody (Ven-Obi), has become the standard to beat for time-limited therapy in CLL. Ven-Obi allows for the rapid induction of remissions with high rates of undetectable minimal residual disease (uMRD) in patients across different treatment settings.
View Article and Find Full Text PDFMol Divers
December 2024
Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China.
Overexpressed AXL kinase is involved in various human malignancies, which incurs tumor progression, poor prognosis, and drug resistance. Suppression of the aberrant AXL axis with genetic tools or small-molecule inhibitors has achieved valid antitumor efficacies in both preclinical studies and clinical antitumor campaigns. Herein we will report the design, synthesis, and structure-activity relationship (SAR) exploration of a series of anilinopyrimidine type II AXL inhibitors.
View Article and Find Full Text PDFCurr Oncol
December 2024
Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy.
The enzyme topoisomerase II alpha (TOP2A) plays a critical role in DNA replication and cell proliferation, making it a promising target for cancer therapy. In epithelial ovarian cancer (EOC), TOP2A overexpression is associated with poor prognosis and resistance to conventional treatments. This review explores the biological functions of TOP2A in EOC and discusses its potential as a therapeutic target.
View Article and Find Full Text PDFJOR Spine
December 2024
Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin Dublin Ireland.
Background: Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!