Introduction: We developed low-cost, portable paper-based diagnostic devices for detection of human immunoglobulin M (IgM) and immunoglobulin G (IgG) in serum without any sample preparation. These devices can be used to help identify presence of diseases, used to provide rapid results (<5 minutes), readily used by untrained personnel, employed in austere environments, configured to obtain multiplexed assays, and easily disposed of.
Materials And Methods: We successfully accomplished colorimetric detection of human IgG and human IgM using a sandwich-style assay within the microfluidic paper device via vertical flow immunoassay configuration. The reaction zone in the wax printed paper layer is a small circular pattern. Gold nanoparticles conjugated with anti-human IgG and IgM antibodies have been used for colorimetric detection of IgG or IgM by naked eye. Colorimetric signal can be precisely quantified through implementation of image analysis software which can be developed as an app for a smartphone. The size of the device is 2 cm × 2 cm × 1 mm.
Results: Colorimetric detection of human IgG was accomplished at 100 fg/mL concentration using a gold nanoparticle-conjugated anti-human IgG antibody. The developed platform has a dynamic range of IgM and IgG concentrations between 0.1 pg/mL and 100 μg/mL. These devices provided a color readout in <5 minutes using 20 µL of serum. We also demonstrated that the devices show a significant degree of ruggedness and temperature stability as they were able to provide satisfactory results (detection of 0.1 pg/mL IgG) after 14 days of long stability and shelf-life experiment at an elevated temperature of at least 50 ˚C-the shelf life can be as long as 180 days under ambient conditions for detection of 100 µg/mL IgG.
Conclusions: Because of the inherent simplicity of the device operation and their ease of use, there is no variation between samples and users of the device. This low-cost approach enables multiplexing with >1 measurement performed in parallel at the same time. We anticipate that because of the sensitivity, specificity, ease of use, and overall reliability, this approach will become a standard for diagnosis of diseases and health conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/milmed/usaa473 | DOI Listing |
Lab Chip
January 2025
School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic. Electronic address:
The review focuses on the design of detection cells, the use of microcontrollers for processing and evaluation of the detection signal, and the development of multi-detection systems for electromigration, liquid chromatography, flow-through and microfluidic techniques. A separate section is the introduction of modern 3D printing techniques and the use of new printing materials for the design of multidetection systems. In addition to traditional utilisation in separation techniques, new versions of contactless conductivity detectors are finding applications in FIA, SIA, portable and paper based analytical systems or as independent sensors.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China.
Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
This review explores the significant role of microfluidic technologies in advancing cancer research, focusing on the below key areas: droplet-based microfluidics, organ-on-chip systems, paper-based microfluidics, electrokinetic chips, and microfluidic chips for the study of immune response. Droplet-based microfluidics allows precise manipulation of cells and three-dimensional microtissues, enabling high-throughput experiments that reveal insights into cancer cell migration, invasion, and drug resistance. Organ-on-chip systems replicate human organs to assess drug efficacy and toxicity, particularly in the liver, heart, kidney, gut, lung, and brain.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
School of Pharmacy, Xi'an Medical University, Xi'an, 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an, 710021, China. Electronic address:
In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!