The Effect of Complex Modification on the Impedance of Cement Matrices.

Materials (Basel)

Department of Constructing Mining Enterprises and Underground Structures, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia.

Published: January 2021

The research results presented in this article were obtained by joint scientific research on creatingcement materials with reduced impedance. It is known that functional additives added to impart electrically conductive properties have a negative impact on physical and mechanical characteristics of the material. This study suggests using the multiwall carbon nanotubes in the amount of 7% from binder mass as a functional additive. The results obtained prove that the addition of this amount of the modifier does not lead to a significant decrease of strength characteristics. Calcium nitrate in the amount of 1-7% was added in order to level the strength loss and to ensure the effective stable electrical conductivity. The multifunctionality of using this salt has been proven, which is manifested in the anti-frost and anticorrosive effects as well in enhancement of electrical conductivity. The optimal composition of the additive with 7% of carbon nanotubes and 3% of calcium nitrate ensures a reduced electrical impedance of cement matrix. The electrical conductivity was 2440 Ohm, while the decrease of strength properties was within 10% in comparison tothe control sample. The nature of changes in the microstructure were studied to determine the influence of complex modifications that showed significant changes in the morphology of the hydration products. The optimum electrical characteristics of cementitious materials are provided due to the uniform distribution of carbon nanotubes and the formation of a network of interconnected micropores filled with the solution of calcium nitrate that provides additional and stable electrical conductivity over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865221PMC
http://dx.doi.org/10.3390/ma14030557DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
16
carbon nanotubes
12
calcium nitrate
12
impedance cement
8
decrease strength
8
stable electrical
8
electrical
6
complex modification
4
modification impedance
4
cement matrices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!