AI Article Synopsis

  • The study addresses the ongoing need for affordable and effective localized treatments for rheumatoid arthritis.
  • Researchers investigated the effects of Cytos-11, an antisense oligonucleotide, on reducing TNF-α gene expression in a rat model of the disease.
  • The treatment with Cytos-11 showed positive results similar to the well-known drug adalimumab (Humira), indicating that antisense technology drugs could be a promising avenue for rheumatoid arthritis therapy.

Article Abstract

The urgency of the search for inexpensive and effective drugs with localized action for the treatment of rheumatoid arthritis continues unabated. In this study, for the first time we investigated the Cytos-11 antisense oligonucleotide suppression of TNF-α gene expression in a rat model of rheumatoid arthritis induced by complete Freund's adjuvant. Cytos-11 has been shown to effectively reduce peripheral blood concentrations of TNF-α, reduce joint inflammation, and reduce pannus development. The results achieved following treatment with the antisense oligonucleotide Cytos-11 were similar to those of adalimumab (Humira); they also compared favorably with those results, which provides evidence of the promise of drugs based on antisense technologies in the treatment of this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864158PMC
http://dx.doi.org/10.3390/ijms22031022DOI Listing

Publication Analysis

Top Keywords

antisense oligonucleotide
12
oligonucleotide cytos-11
8
rheumatoid arthritis
8
anti-rheumatic antisense
4
cytos-11
4
cytos-11 targeting
4
targeting tnf-α
4
tnf-α expression
4
expression urgency
4
urgency search
4

Similar Publications

The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.

View Article and Find Full Text PDF

Gene therapy in polycystic kidney disease: A promising future.

J Transl Int Med

December 2024

Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China.

Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure.

View Article and Find Full Text PDF

Gut microbiota in Alzheimer's disease: understanding molecular pathways and potential therapeutic perspectives.

Ageing Res Rev

January 2025

i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain. Electronic address:

Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks.

View Article and Find Full Text PDF

Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.

View Article and Find Full Text PDF

Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!