Novel Treatments and Preventative Strategies Against Food-Poisoning Caused by Staphylococcal Species.

Pathogens

Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain.

Published: January 2021

AI Article Synopsis

  • Staphylococcal infections are a common health issue, with certain strains being significant in clinical settings and capable of causing food poisoning through various toxins.
  • Researchers are exploring innovative preventative measures, including food supplements, to combat staphylococcal contamination and reduce food poisoning incidents.
  • Plant-derived compounds like polyphenols, flavonoids, and terpenoids exhibit strong antimicrobial properties, making them potential key players in preventing staphylococcal food intoxication.

Article Abstract

Staphylococcal infections are a widespread cause of disease in humans. In particular, is a major causative agent of infection in clinical medicine. In addition, these bacteria can produce a high number of staphylococcal enterotoxins (SE) that may cause food intoxications. Apart from , many coagulase-negative spp. could be the source of food contamination. Thus, there is an active research work focused on developing novel preventative interventions based on food supplements to reduce the impact of staphylococcal food poisoning. Interestingly, many plant-derived compounds, such as polyphenols, flavonoids, or terpenoids, show significant antimicrobial activity against staphylococci, and therefore these compounds could be crucial to reduce the incidence of food intoxication in humans. Here, we reviewed the most promising strategies developed to prevent staphylococcal food poisoning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909252PMC
http://dx.doi.org/10.3390/pathogens10020091DOI Listing

Publication Analysis

Top Keywords

staphylococcal food
8
food poisoning
8
food
6
staphylococcal
5
novel treatments
4
treatments preventative
4
preventative strategies
4
strategies food-poisoning
4
food-poisoning caused
4
caused staphylococcal
4

Similar Publications

After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.

View Article and Find Full Text PDF

Calcium alginate reinforced zwitterionic double network hydrogel with mechanical robustness and antimicrobial activity for freshwater shrimp spoilage detection.

Food Res Int

January 2025

Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:

Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.

View Article and Find Full Text PDF

Photodynamic inactivation mediated by natural alizarin on bacteria for the safety of fresh-cut apples.

Food Res Int

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

Most photosensitizers have limited responsiveness to visible light, however, visible light is a light source with a wide range of wavelengths and the most common in daily life, and making full use of visible light can help to enhance the photodynamic antimicrobial properties of photosensitizers. To tackle this issue, this study confirmed that alizarin has a good absorption capacity for visible light by UV-DRS analysis. Theoretical calculations showed that alizarin might be excited through the charge transfer (CT) mechanism.

View Article and Find Full Text PDF

The development of safe, environmentally friendly, edible antimicrobial packaging films represents a promising alternative to conventional plastic packaging for reducing spoilage and extending the shelf life of fresh food. Here, we propose a novel strategy to construct edible β-CD-MOF/carvacrol@zein (BCCZ) composite films by intertwining β-CD-MOF loaded with the antimicrobial essential oil carvacrol, and zein. The resulting BCCZ films exhibit high humidity-triggered, long-lasting bactericidal efficacy, effective fruit preservation, and excellent biosafety.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!