In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909238 | PMC |
http://dx.doi.org/10.3390/cells10020196 | DOI Listing |
Curr Microbiol
January 2025
Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & School of Basic Medical Science & Institution of One Health Research, Guizhou Medical University, Guiyang, 561113, People's Republic of China.
In the present study, the taxonomic position of Salisediminibacterium haloalkalitolerans was evaluated by determining the 16S rRNA gene sequence similarity, genome relatedness, and phylogenetic analyses. The 16S rRNA gene sequences extracted from the genomes of Salisediminibacterium haloalkalitolerans 10nlg and Salisediminibacterium halotolerans DSM 26530 showed 100% similarity, supporting their classification as the same species. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between S.
View Article and Find Full Text PDFBioessays
January 2025
The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK.
Although genome-scale analyses have provided insights into the connection between genetic variability and complex human phenotypes, much trait variation is still not fully understood. Genetic variation within repetitive elements, such as the multi-copy, multi-locus ribosomal DNA (rDNA), has emerged as a potential contributor to trait variation. Whereas rDNA was long believed to be largely uniform within a species, recent studies have revealed substantial variability in the locus, both within and across individuals.
View Article and Find Full Text PDFBMC Oral Health
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Background: Tongue-coating microbiota, especially known as the tongue microbiome, holds significant value as both a prospective clinical diagnostic biomarker and therapeutic target, which plays a crucial role in the oral microecological health. However, there is limited understanding of the composition and function of tongue coating microbiota in chronic kidney disease patients undergoing hemodialysis.
Methods: Thirty-one non-diabetic hemodialysis patients (nonDM_HD), 29 diabetic hemodialysis patients (DM_HD) and 33 healthy controls (HC) were enrolled.
Malar J
January 2025
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
Background: Foreign migrant workers from malaria-endemic regions play a critical factor in the transmission of malaria to non-endemic areas, mainly due to their mobility while seeking employment opportunities. This risk is particularly heightened in areas where malaria vectors are present.
Methods: This study aimed to investigate the malaria vectors in two sub-districts in Khon Kaen Province, known for their factory areas and the significant presence of Myanmar migrant worker communities.
Elife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!