Ubiquinol can protect endothelial cells from multiple mechanisms that cause endothelial damage and vascular dysfunction, thus contributing to dementia. A total of 69 participants diagnosed with mild cognitive impairment (MCI) received either 200 mg/day ubiquinol (Ub) or placebo for 1 year. Cognitive assessment of patients was performed at baseline and after 1 year of follow-up. Patients' cerebral vasoreactivity was examined using transcranial Doppler sonography, and levels of Ub and lipopolysaccharide (LPS) in plasma samples were quantified. Cell viability and necrotic cell death were determined using the microvascular endothelial cell line bEnd3. Coenzyme Q10 (CoQ) levels increased in patients supplemented for 1 year with ubiquinol versus baseline and the placebo group, although higher levels were observed in male patients. The higher cCoQ concentration in male patients improved cerebral vasoreactivity CRV and reduced inflammation, although the effect of Ub supplementation on neurological improvement was negligible in this study. Furthermore, plasma from Ub-supplemented patients improved the viability of endothelial cells, although only in T2DM and hypertensive patients. This suggests that ubiquinol supplementation could be recommended to reach a concentration of 5 μg/mL in plasma in MCI patients as a complement to conventional treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909244PMC
http://dx.doi.org/10.3390/antiox10020143DOI Listing

Publication Analysis

Top Keywords

cerebral vasoreactivity
12
ubiquinol supplementation
8
patients
8
mild cognitive
8
cognitive impairment
8
endothelial cells
8
male patients
8
patients improved
8
ubiquinol
5
endothelial
5

Similar Publications

Acute maternal hyperoxygenation to predict hypoxia and need for emergency intervention in fetuses with transposition of the great arteries: a pilot study.

J Am Soc Echocardiogr

January 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Background: Newborns with transposition of the great arteries (TGA) are at risk of severe hypoxia from inadequate atrial mixing, closure of the arterial duct and/or pulmonary hypertension (PPHN). Acute maternal hyperoxygenation (AMH) might assist in identifying at-risk fetuses. We report pulmonary vasoreactivity to AMH in TGA fetuses and its relationship to early postnatal hypoxia and requirement for emergency balloon atrial septostomy (e-BAS).

View Article and Find Full Text PDF

Purpose: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most common sleep-related breathing disorder. Longer term, repeated episodes of hypercapnia and hypoxemia during sleep are associated with inflammatory and atherosclerosis-related factors. The aim of this study was to explore the effect of continuous positive airway pressure (CPAP) therapy on cerebral vasoreactivity and early atherosclerosis in patients with severe OSAHS.

View Article and Find Full Text PDF

Cerebral autoregulation (CA) is the mechanism that maintains stable cerebral blood flow (CBF) despite fluctuations in systemic blood pressure, crucial for brain homeostasis. Recent evidence highlights distinct regional variations in CA between the anterior (carotid) and posterior (vertebrobasilar) circulations. Non-invasive neuromonitoring techniques, such as transcranial Doppler, transfer function analysis, and near-infrared spectroscopy, facilitate the dynamic assessment of CBF and autoregulation.

View Article and Find Full Text PDF

Variable Cerebral Blood Flow Responsiveness to Acute Hypoxic Hypoxia.

bioRxiv

November 2024

Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States.

Cerebrovascular reactivity (CVR) to changes in blood carbon dioxide and oxygen levels is a robust indicator of vascular health. Although CVR is typically assessed with hypercapnia, the interplay between carbon dioxide and oxygen, and their ultimate roles in dictating vascular tone, can vary with pathology. Methods to characterize vasoreactivity to oxygen changes, particularly hypoxia, would provide important complementary information to established hypercapnia techniques.

View Article and Find Full Text PDF

Introduction: Neurovascular coupling (NVC) is an important mechanism for the regulation of cerebral perfusion during intensive cognitive activity. Thus, it should be examined in terms of its effects on the regulation dynamics of cerebral perfusion and its possible alterations during cognitive impairment. The dynamic dependence of continuous changes in cerebral blood velocity (CBv), which can be measured noninvasively using transcranial Doppler upon fluctuations in arterial blood pressure (ABP) and CO tension, using end-tidal CO (EtCO) as a proxy, can be quantified via data-based dynamic modeling to yield insights into two key regulatory mechanisms: the dynamic cerebral autoregulation (dCA) and dynamic vasomotor reactivity (DVR), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!