Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment.

Environ Pollut

Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland.

Published: October 2020

The presence of pharmaceuticals in the aquatic environment, both in marine and freshwater reservoirs, is a major concern of global environmental protection. Among the drugs that are most commonly used, NSAIDs tend to dominate. Currently, being aware of the problem caused by drug contamination, it is extremely important to evaluate the scale and the full spectrum of its consequences, from short-term to long-term effects. The influence on non-target aquatic animals can take place at many levels, and the effects can be seen both in behaviour and physiology, but also in genetic alterations or reproduction disorders, affecting the development of entire populations. This review summarises all the advances made to estimate the impact of NSAIDs on aquatic animals. Multicellular animals from all trophic levels, inhabiting both inland waters, seas and oceans, have been considered. Particular attention has been paid to chronic studies, conducted at low, environmentally-relevant concentrations, to estimate the real effects of the present pollution. The number of such studies has indeed increased in recent years, allowing for a better insight into the possible consequences of pharmaceutical pollution. It should be stressed, however, that our knowledge is still limited to a few model species, while there are many groups of organisms completely unexplored regarding the effects of drugs. Therefore, the main aim of this paper was to summarise the current state of knowledge on the toxicity of NSAIDs in aquatic animals, also identifying important gaps and major issues requiring further analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115891DOI Listing

Publication Analysis

Top Keywords

aquatic animals
12
aquatic environment
8
nsaids aquatic
8
aquatic
5
toxic effects
4
nsaids
4
effects nsaids
4
nsaids non-target
4
non-target species
4
species review
4

Similar Publications

Environmental thresholds of semiaquatic bugs (Heteroptera, Gerromorpha) as an indicator of environmental change in Amazon streams.

Environ Monit Assess

January 2025

Programa de Pós-Graduação em Ecologia (PPGECO), Universidade Federal do Pará (UFPA), Instituto de Ciências Biológicas (UFPA), Belém, Pará, Brazil.

Freshwater ecosystems under the influence of human activities are subject to multiple environmental stressors that lead to biodiversity loss and habitat modification. In recent years, various organisms have been used as bioindicators to detect environmental changes by their ability to perceive changes in community attributes. A good example is the semiaquatic bugs (Hemiptera, infra order Gerromorpha) that act as predators and are sensitive to subtle changes in environmental conditions.

View Article and Find Full Text PDF

The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.

View Article and Find Full Text PDF

Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution.

Zool Res

January 2025

Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.

Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .

View Article and Find Full Text PDF

Effects of the 2022 Oder River environmental disaster on fish gill structure.

Dis Aquat Organ

January 2025

Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550 Szczecin, Poland.

The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!