Embryonic zebrafish response to a commercial formulation of azoxystrobin at environmental concentrations.

Ecotoxicol Environ Saf

Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto, Rua Alfredo Allen, nº 208, 4200-135 Porto, Portugal. Electronic address:

Published: March 2021

Azoxystrobin is a broad-spectrum strobilurin fungicide for use on a wide range of crops available to end-users as formulated products. Due to its extensive application, it has been detected in aquatic ecosystems, raising concerns about its environmental impact, which is still poorly explored. The objective of this work was to study the effects of a commercial formulation of azoxystrobin in the zebrafish embryo model. Sublethal and lethal effects were monitored during the exposure period from 2 h post fertilisation (hpf) to 96 hpf after exposure to azoxystrobin concentrations (1, 10 and 100 μg L). The responses of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)) as well as detoxifying enzymes (glutathione-s-transferase (GST) and carboxylesterase (CarE)) were evaluated at 96 hpf. Similarly, glutathione levels (reduced (GSH) and oxidised (GSSG) glutathione), neurotransmission (acetylcholinesterase (AChE)) and anaerobic respiration (lactate dehydrogenase (LDH)) -related enzymes were assayed. At 120 hpf, larvae from each group were used for behaviour analysis. Results from this study showed concentration-dependent teratogenic effects, particularly by increasing the number of malformations (yolk and eye), with a higher prevalence at the highest concentration. However, it was found that the lowest concentration induced a high generation of reactive oxygen species (ROS) and increased activity of SOD, GST, and CarE. In addition, GR and GSSG levels were decreased by the lowest concentration, suggesting an adaptive response to oxidative stress, which is also supported by the increased AChE activity and absence of behavioural changes. These findings advance the knowledge of the azoxystrobin developmental and environmental impacts, which may impose ecotoxicological risks to non-target species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.111920DOI Listing

Publication Analysis

Top Keywords

commercial formulation
8
formulation azoxystrobin
8
lowest concentration
8
azoxystrobin
5
embryonic zebrafish
4
zebrafish response
4
response commercial
4
azoxystrobin environmental
4
environmental concentrations
4
concentrations azoxystrobin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!