Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention.

Neuroimage

Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy; Department of Neurology, Radiology, Neuroscience, and Biomedical Engineering Washington University Saint Louis, MO 63110, USA; Venetian Institute of Molecular Medicine, VIMM, 35128 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy. Electronic address:

Published: April 2021

The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015). Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiological correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the alpha and beta bands (8-30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone et al. 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the application of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that attention-rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD connectivity modulations match multi-spectral MEG BLP connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.117781DOI Listing

Publication Analysis

Top Keywords

bold-fc modulations
12
bold connectivity
8
visuospatial attention
8
previous work
8
attention task
8
spadone et al
8
et al 2015
8
visual attention
8
bold-fc
6
visual
6

Similar Publications

Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention.

Neuroimage

April 2021

Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy; Department of Neurology, Radiology, Neuroscience, and Biomedical Engineering Washington University Saint Louis, MO 63110, USA; Venetian Institute of Molecular Medicine, VIMM, 35128 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy. Electronic address:

The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015).

View Article and Find Full Text PDF

Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.

Neuroimage

September 2020

Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Clinic for Neurology, Ismaningerst. 22, 81675, Munich, Munich, Germany. Electronic address:

Functional magnetic resonance imaging (fMRI) of blood oxygenation level dependent (BOLD) signals during the resting-state is widely used to study functional connectivity (FC) of slowly fluctuating ongoing brain activity (BOLD-FC) in humans with and without brain diseases. While physiological impairments, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!