Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Primary cultures of cerebellar granule neurons (CGNs) derived from chicken embryos were used to explore the effects on developmental neurotoxicity by a complex defined mixture of persistent organic pollutants (POPs). Its chemical composition and concentrations were based on blood levels in the Norwegian/Scandinavian population. Perfluorooctane sulfonic acid (PFOS) alone, its most abundant compound was also evaluated. Different stages of CGNs maturation, between day in vitro (DIV) 1, 3, and 5 were exposed to the POP mixture, or PFOS alone. Their combination with glutamate, an excitatory endogenous neurotransmitter important in neurodevelopment, also known to cause excitotoxicity was evaluated. Outcomes with the mixture at 500x blood levels were compared to PFOS at its corresponding concentration of 20 μM. The POP mixture reduced tetrazolium salt (MTT) conversion at earlier stages of maturation, compared to PFOS alone. Glutamate-induced excitotoxicity was enhanced above the level of that induced by glutamate alone, especially in mature CGNs at DIV5. Glutathione (GSH) concentrations seemed to set the level of sensitivity for the toxic insults from exposures to the pollutants. The role of N-methyl-D-aspartate receptor (NMDA-R) mediated calcium influx in pollutant exposures was investigated using the non-competitive and competitive receptor antagonists MK-801 and CGP 39551. Observations indicate a calcium-independent, but still NMDA-R dependent mechanism in the absence of glutamate, and a calcium- and NMDA-R dependent one in the presence of glutamate. The outcomes for the POP mixture cannot be explained by PFOS alone, indicating that other chemicals in the mixture contribute its overall effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.reprotox.2021.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!