In nature, the combination of composition, structure, and shape determines the matter's functional performance to a large extent. Inspired by which, two electrospun Janus nanofiber formulations were created using side-by-side electrospinning in this work. Tamoxifen citrate (TAM) was used as a model drug and ethyl cellulose (EC) and polyvinylpyrrolidone K60 (PVP) as the polymer carrier matrices. The fibers have linear cylindrical morphologies and distinct Janus structures by scanning electron microscopy. One side of the fibers took a round shape, while the other was crescent-shaped. The drug was present in both polymer matrices in the form of amorphous solid dispersions, owing to strong intermolecular interactions between drug and polymer. In vitro dissolution tests demonstrated that both sets of fibers could provide biphasic drug release due to the difference in solubility of PVP and EC. The different shape of TAM-EC and TAM-PVP side of the Janus structure resulted in a considerable variation in the drug release profiles. The Janus structure with crescent TAM-PVP side and round TAM-EC side gave a more rapid burst release in the first phase of release, and slower sustained release in the second phase. This work thus reports a new strategy for systematically developing advanced functional nanomaterials based on both shape- and structure-performance relationships.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120203 | DOI Listing |
Biomaterials
December 2024
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.
View Article and Find Full Text PDFNanomedicine (Lond)
December 2024
Department of Orthopedics, 411 hospital, Shanghai University, Shanghai, China.
Electrospun nanofibers produced through single-fluid blending processes have successfully demonstrated their potential as highly effective wound dressings. However, electrospun Janus nanofibers, in which various chambers can be designed to load different active pharmaceutical ingredients into different polymeric matrices, are further exhibiting their versatility for promoting wound healing. This commentary declares that wound dressings always need multiple functional performances to promote wound healing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China.
ACS Appl Bio Mater
December 2024
Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshar, Guilan 43861-91836, Iran.
A promising approach for wound treatment is using multilayer wound dressings that offer multifunctional properties. In this study, a bilayered electrospun/hydrogel gelatin-based scaffold integrated with honey and curcumin was developed to treat wounds under an in vivo study. The first layer consisted of an enzymatic cross-linked gelatin hydrogel containing honey and curcumin, which gelatin/PCL nanofibers reinforced.
View Article and Find Full Text PDFBiomater Adv
November 2024
Institute for Biomechanics, ETH Zurich, Gloriastrasse 37-39, 8092 Zurich, Switzerland.
Aging, trauma, pathology, and poor natural tissue regeneration are the leading causes of osteoarthritis (OA), an articular cartilage disease. Electrospun scaffolds have gained attention as potential matrices for the treatment of OA because of their high degree of ECM mimicry, which suits chondrocyte migration, adhesion, and proliferation. However, none of the products recently introduced in the market are nanofiber-based.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!