Background: Simultaneous evaluation of barrier protein expression in the gut and the brain and their modulation under stress conditions have not been studied before now. As the permeability and function of the gut and blood-brain barrier are different and both express the MRs, we hypothesized that stress of post-weaning social isolation induces changes in tight junction protein expression in the gut which are (1) independent of changes in the brain and (2) are mediated via the mineralocorticoid receptor (MR).

Methods: First, using UPLC-MS/MS we have successfully validated and selected a dose (1.2 mg/rat/day) of the MR antagonist spironolactone to treat female rats exposed to stress of chronic isolation or control conditions from postnatal day 21 for 9 weeks.

Key Results: Isolation stress caused an enhancement of gene expression of occludin and ZO-1 and a decrease in claudin-5 and MR expression in both the small intestine and prefrontal cortex. Isolation stress failed to decrease claudin-5 (small intestine) and MR (prefrontal cortex) gene expression in spironolactone-treated rats. MR blockade resulted in a decrease in claudin-15 expression in the small intestine. Anxiogenic effect of chronic stress, measured in elevated plus-maze test, was partly prevented by spironolactone treatment.

Conclusions & Inferences: Claudins, the main regulators of intestinal barrier permeability responded to chronic stress of social isolation and/or simultaneous blockade of MR in female rats by alterations independent of changes in the brain cortex. The results suggest a physiological role of MR in the control of claudin expression in the small intestine, but not in the brain cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nmo.14084DOI Listing

Publication Analysis

Top Keywords

small intestine
20
intestine prefrontal
12
prefrontal cortex
12
female rats
12
expression small
12
tight junction
8
rats exposed
8
stress
8
exposed stress
8
stress chronic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!