Influenza virus infections affect millions of people annually, and current available vaccines provide varying rates of protection. However, the way in which the nasal microbiota, particularly established pneumococcal colonization, shape the response to influenza vaccination is not yet fully understood. In this study, we inoculated healthy adults with live Streptococcus pneumoniae and vaccinated them 3 days later with either tetravalent-inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). Vaccine-induced immune responses were assessed in nose, blood, and lung. Nasal pneumococcal colonization had no impact upon TIV-induced antibody responses to influenza, which manifested in all compartments. However, experimentally induced pneumococcal colonization dampened LAIV-mediated mucosal antibody responses, primarily IgA in the nose and IgG in the lung. Pulmonary influenza-specific cellular responses were more apparent in the LAIV group compared with either the TIV or an unvaccinated group. These results indicate that TIV and LAIV elicit differential immunity to adults and that LAIV immunogenicity is diminished by the nasal presence of S. pneumoniae. Therefore, nasopharyngeal pneumococcal colonization may affect LAIV efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934923 | PMC |
http://dx.doi.org/10.1172/jci.insight.141088 | DOI Listing |
mBio
December 2024
Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
Unlabelled: is an important human pathogen that normally resides in the human nasopharynx. Competence-mediated bacteriocin expression by plays a major role in both the establishment and persistence of colonization on this polymicrobial surface. Over 20 distinct bacteriocin loci have been identified in pneumococcal genomes, but only a small number have been characterized phenotypically.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "P. Giaccone", University of Palermo, Palermo, Italy.
Introduction: is a prevalent and virulent global pathogen, with colonization being considered a precondition for pneumococcal disease. Understanding colonization is critical for gaining insights into transmission dynamics and developing effective interventions. This study aimed to determine the prevalence of nasopharyngeal colonization and serotype distribution in the Sicilian population.
View Article and Find Full Text PDFVaccine
December 2024
Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, s/n, São Domingos, Niterói, RJ 24020-150, Brazil. Electronic address:
Background: The introduction of the 10-valent pneumococcal conjugate vaccine (PCV10) for nationwide childhood immunization in 2010 led to a significant reduction in colonization and invasive pneumococcal disease (IPD) by vaccine serotypes in young. However, non-vaccine serotypes have emerged, and serotype 19A is now the leading cause of IPD in Brazil.
Methods: We analyzed 32 serotype 19A isolates of Streptococcus pneumoniae recovered from children and adults who attended different health facilities in the state of Rio de Janeiro, Brazil, between 2010 and 2023.
Vaccine
January 2025
Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil. Electronic address:
Diseases caused by Streptococcus pneumoniae (pneumococcus) produce a great impact on public health, killing about one million people annually despite available vaccines. Recent research has revealed that the pneumococcus produces extracellular vesicles (pEVs), which display selective cargo and hold potential for vaccine development. Here, we evaluated the immunogenicity and protective potential of pEVs derived from a non-encapsulated pneumococcal strain (R6) using murine models of pneumococcal colonization and invasive pneumonia.
View Article and Find Full Text PDFN Engl J Med
November 2024
From the Department of Pediatric Infectious Diseases, Institute of Tropical Medicine (L.-M.Y., M. Toizumi, C.I., M. Takegata), the Department of Global Health, School of Tropical Medicine and Global Health (L.-M.Y., M. Toizumi), and Nagasaki University Graduate School of Biomedical Science (L.-M.Y.), Nagasaki University, Nagasaki, and the National Institute of Infectious Diseases, Tokyo (N.K.) - both in Japan; the Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi (H.A.T.N., L.H.H., D.-A.D.), and the Department of Bacteriology, Pasteur Institute, Nha Trang (L.T.L., H.T.D.) - both in Vietnam; the Department of Infectious Disease Epidemiology (B.J.Q., K.Z., K.M., S.F.) and the Centre for Mathematical Modelling of Infectious Diseases (B.J.Q., K.Z., S.F.), London School of Hygiene and Tropical Medicine, and the Institute for Infection and Immunity, St. George's University (J.H.) - both in London; the Department of Infection, Immunity, and Global Health, Murdoch Children's Research Institute (M.L.N., B.D.O., E.M.D., C.S., K.M.), and the Department of Paediatrics, University of Melbourne (C.S., K.M.), Melbourne, VIC, and the Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC (C.S.) - all in Australia; and the Center for Global Health, Charité-Universitätmedizin Berlin, Berlin (S.F.).
Background: After pneumococcal disease and colonization have been controlled through vaccination campaigns, a reduced pneumococcal conjugate vaccine (PCV) schedule may be sufficient to sustain that control at reduced costs.
Methods: We investigated whether a single primary dose and booster dose (1p+1) of the 10-valent PCV (PCV10) would be noninferior to alternative dose schedules in sustaining control of carriage of pneumococcal serotypes included in the vaccine. In Nha Trang, Vietnam, an area in which PCV had not been used previously, a PCV10 catch-up campaign was conducted in which the vaccine was offered to children younger than 3 years of age, after which a cluster-randomized trial was conducted in which children received PCV10 at 2, 3, and 4 months of age (3p+0 group); at 2, 4, and 12 months of age (2p+1 group); at 2 and 12 months of age (1p+1 group); or at 12 months of age (0p+1 group).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!