AI Article Synopsis

  • * Researchers conducted tests using a mouse model with the EPAS1A529V mutation to examine vascular malformations through various imaging techniques and histological analyses.
  • * Results indicated that patients and mutant mice exhibited a range of vascular malformations, with the patient vessels showing a higher presence of mutations compared to normal tissue, establishing vascular malformation as a new clinical characteristic of EPAS1 gain-of-function syndrome.

Article Abstract

Mutations in EPAS1, encoding hypoxia-inducible factor-2α (HIF-2α), were previously identified in a syndrome of multiple paragangliomas, somatostatinoma, and polycythemia. HIF-2α, when dimerized with HIF-1β, acts as an angiogenic transcription factor. Patients referred to the NIH for new, recurrent, and/or metastatic paraganglioma or pheochromocytoma were confirmed for EPAS1 gain-of-function mutation; imaging was evaluated for vascular malformations. We evaluated the Epas1A529V transgenic syndrome mouse model, corresponding to the mutation initially detected in the patients (EPAS1A530V), for vascular malformations via intravital 2-photon microscopy of meningeal vessels, terminal vascular perfusion with Microfil silicate polymer and subsequent intact ex vivo 14T MRI and micro-CT, and histologic sectioning and staining of the brain and identified pathologies. Further, we evaluated retinas from corresponding developmental time points (P7, P14, and P21) and the adult dura via immunofluorescent labeling of vessels and confocal imaging. We identified a spectrum of vascular malformations in all 9 syndromic patients and in all our tested mutant mice. Patient vessels had higher variant allele frequency than adjacent normal tissue. Veins of the murine retina and intracranial dura failed to regress normally at the expected developmental time points. These findings add vascular malformation as a new clinical feature of EPAS1 gain-of-function syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021124PMC
http://dx.doi.org/10.1172/jci.insight.144368DOI Listing

Publication Analysis

Top Keywords

vascular malformations
16
epas1 gain-of-function
12
gain-of-function syndrome
8
developmental time
8
time points
8
vascular
5
developmental vascular
4
malformations
4
epas1
4
malformations epas1
4

Similar Publications

Background: Craniocervical junction dural arteriovenous fistulas (CCJ-DAVFs) are rare and complex vascular malformations that are challenging to diagnose and treat. This study aims to compare surgical and endovascular treatments for CCJ-DAVFs through a systematic review and meta-analysis.

Methods: A systematic review and meta-analysis was conducted according to the PRISMA guidelines.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Introduction: Brain arteriovenous malformations (AVM) are complex vascular pathologies with a significant risk of hemorrhage. Stereotactic radiosurgery (SRS) is an effective treatment modality for AVM, initially popularized on the Gamma Knife (Elekta AB, Stockholm, Sweden) platform, and now benefits from the modern advances in linear accelerator (LINAC)-based platforms. This study evaluates the outcomes of LINAC-based SRS/hypofractionated stereotactic radiotherapy (hFSRT) for cerebral AVMs.

View Article and Find Full Text PDF

Background: Spinal cord vascular malformations (SCVMs) in children are relatively rare and present unique challenges due to their distinct physiological characteristics. These malformations often manifest with nonspecific clinical symptoms, increasing the likelihood of misdiagnosis. The treatment of pediatric SCVMs requires a tailored approach, with the choice between microsurgical intervention and endovascular embolization depending on the specific type of malformation and individual patient factors.

View Article and Find Full Text PDF

Cerebral proliferative angiopathy (CPA) is a rare subtype of cerebral arteriovenous malformation, characterized by unique angiographic features and clinical presentations. Although the clinical and angiographic characteristics of CPA have been well described, their impact on the surrounding tissues remains underexplored. Herein, we investigated the presence of calvarial thickening in patients with CPA, and discuss its potential pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!