Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Asphaltenes play a crucial role in crude oil behavior, and model compounds are often used to capture, mimic, and predict certain interfacial properties. In previous works, sorption of an asphaltene model compound (C5PeC11) was studied using surface pressure isotherms, where a deviation from the expected thermodynamic behavior of the interface during decane-water and air-water compression experiments was observed but not explained. In this work, the interfacial behavior of C5PeC11 was assessed at the decane-water and the air-water interfaces using a multiscale approach that includes: compression-expansion experiments on rectangular and radial Langmuir troughs, dynamic interfacial stress relaxation, and fluorescence microscopy imaging. Connections between molecular and microscopic phenomena strongly suggest that the nonthermodynamic response can be explained through a dynamic effect whose origin lies in the predominance of intermolecular forces in C5PeC11 molecules over the mechanical compression force applied. When aggregation begins at the air-water interface, stable structures are formed, and the nonthermodynamic phenomenon is not observed in subsequent compressions. However, at the decane-water interface, the initial aggregation is not consolidated due to the effect of the oil phase on the free energy of the interface allowing the high reproducibility of the dynamic effect in subsequent compression cycles. These results highlight the need to probe interfacial systems at various length scales to adequately separate equilibrium thermodynamics from dynamic responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c03151 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!