We report facile growth methods for high-quality monolayer and multilayer MoS films using MoOCl as the vapor-phase molecular Mo precursor. Compared to the conventional covalent solid-type Mo precursors, the growth pressure of MoOCl can be precisely controlled. This enables the selection of growth mode by adjusting growth pressure, which facilitates the control of the growth behavior as the growth termination at a monolayer or as the continuous growth to a multilayer. In addition, the use of carbon-free precursors eliminates concerns about carbon contamination in the produced MoS films. Systematic studies for unveiling the growth mechanism proved two growth modes, which are predominantly the physisorption and chemisorption of MoOCl. Consequently, the thickness of MoS can be controlled by our method as the application demands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c19591 | DOI Listing |
Nat Commun
December 2024
Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong S.A.R. 999077, China.
Metallic 1T phase molybdenum disulfide (MoS) is among the most promising electrode materials for supercapacitors, but its capacitance and cyclability remain to be improved to meet the constantly increasing energy storage needs in portable electronics. In this study, we present a strategy, covalent functionalization, which achieves the improvement of capacitance of metallic 1T phase MoS. Covalently functionalized by the modifier 4-bromobenzenediazonium tetrafluoroborate, the metallic MoS membrane exhibits increased interlayer spacing, slightly curled layered architecture, enhanced charge transfer, and improved adsorption capabilities toward electrolyte molecules and ions.
View Article and Find Full Text PDFSmall
December 2024
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, 116024, China.
The precise domain control in ferroelectric CuInPS (CIPS) remains challenging. A promising approach is by interfacing CIPS with the ferroelectric layer, but interface-driven ferroelectricity tunning mechanism remains unclear. Here, the demonstration of interfacial strain-induced ferroelectric tuning and enhancement in CIPS via ferroelectric substrate is reported by photoluminescence (PL) spectroscopy, combined with piezoresponse force microscopy (PFM) and density functional theory (DFT) calculations.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS@CuO-Au nanocomposite conjugation. The MoS@CuO-Au nanocomposites were analyzed by SEM, XRD, and EDS.
View Article and Find Full Text PDFSmall
December 2024
Zhejiang University, Hangzhou, 310027, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!