Conventional soil solution sampling of species-sensitive inorganic contaminants, such as hexavalent chromium (Cr), may induce interconversions due to disruption of system equilibrium. The temporal resolution that these sampling methods afford may also be insufficient to capture dynamic interactions or require time-consuming and expensive analysis. Microdialysis (MD) is emerging as a minimally invasive passive sampling method in environmental science, permitting the determination of solute fluxes and concentrations at previously unobtainable spatial scales and time frames. This article presents the first use of MD coupled to high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the continuous sampling and simultaneous detection of Cr in soil solution. The performance criteria of the system were assessed using stirred solutions; good repeatability of measurement (RSD < 2.5%) was obtained for Cr, with a detection limit of 0.2 μg L. The online MD-HPLC-ICP-MS setup was applied to the sampling of native Cr in three soils with differing geochemical properties. The system sampled and analyzed fresh soil solution at 15 min intervals, offering improved temporal resolution and a significant reduction in analysis time over offline MD. Simple modifications to the chromatographic conditions could resolve additional analytes, offering a powerful tool for the study of solute fluxes in soil systems to inform research into nutrient availability or soil-to-plant transfer of potentially harmful elements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c08140DOI Listing

Publication Analysis

Top Keywords

soil solution
16
liquid chromatography-inductively
8
chromatography-inductively coupled
8
coupled plasma
8
plasma mass
8
mass spectrometry
8
hexavalent chromium
8
temporal resolution
8
solute fluxes
8
sampling
6

Similar Publications

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

Development of heat sealable film from tapioca and potato starch for application in edible packaging.

J Food Sci Technol

February 2025

Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.

This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.

View Article and Find Full Text PDF

Mitigating cadmium contamination in soil using Biochar, sulfur-modified Biochar, and other organic amendments.

Int J Phytoremediation

January 2025

College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China.

Biochar is a novel approach to remediating heavy metal-contaminated soil. Using various organic amendments like phyllosilicate-minerals (PSM), compost, biochar (BC) and sulfur-modified biochar (SMB), demonstrates superior adsorption capacity and stability compared to unmodified biochar (BC). The adsorption mechanisms of SMB are identified for its potential to increase soil-pH and reduce available cadmium (Cd).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!