Background: Field experiments were conducted across three sites in Mississippi in 2018 to evaluate carrier volume and spray quality effects on glyphosate-resistant soybean response to dicamba. Treatments consisted of dicamba (5.6 g a.e. ha ) plus glyphosate (8.7 g a.e. ha ) applied to soybean at R1 using 140, 105, 70, 35, 14, or 7 L ha . Each carrier volume was applied with TT11002 and XR110015 nozzles which resulted in Fine and Coarse spray qualities, respectively. A colorimetric dye was included in spray solutions to quantify spray coverage of each treatment.
Results: Spray coverage decreased with carrier volume and ranged from 21% to 3%. Conversely, soybean injury increased as carrier volume decreased. Soybean height 14 days after treatment (DAT) was reduced 34% to 37% from carrier volumes of 70 to 140 L ha ; however, carrier volumes of 14 and 7 L ha resulted in 45% height reductions. By 28 DAT soybean height was similar among volumes of 35 to 140 L ha (39% to 42% reduction); however, volumes of 14 and 7 L ha resulted in 46% and 51% reductions, respectively. Grain yield was reduced 14% from treatment at 140 L ha and reductions increased with decreased carrier volume to 41% loss at 7 L ha . Averaged across carrier volumes, Fine and Coarse sprays caused 30% and 26% yield loss, respectively.
Conclusion: These data suggest that carrier volume profoundly affects soybean response to dicamba. Therefore, soybean response to sublethal dicamba doses applied at a constant carrier volume may not reflect physical drift exposure. © 2021 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6300 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 623 India.
Since the initial publication on the first TiCT MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in biomedical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China.
The low conductivity of sulfur substances and the fussy effect of lithium polysulfides (LPS) limit the practical application of lithium-sulfur batteries (LSBs). In this work, NiS is in situ synthesized on N-doped 3D carbon nanofibers with an optimized pore structure as a cathode material for LSBs. The conductive carbon nanofiber skeleton with a hierarchical (micropore-mesopore-macropore) structure etched by Cd can reduce the interface resistance of the cathode and remiss volume expansion during charge-discharge progress.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.
Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!