Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heavy metal concentrations, which have been increasing over the last 200 years, affect soil quality and crop yields. These elements are difficult to eliminate from soils and may constitute a human health hazard by entering the food chain. Recently, we obtained a selection of mutants with different degrees of tolerance to a mixture of heavy metals (HMmix) in order to gain a deeper insight into the underlying mechanism regulating plant responses to these elements. In this study, we characterized the mutant obtained Atkup8 (in this work, Atkup8-2), which showed one of the most resistant phenotypes, as determined by seedling root length. Atkup8-2 is affected in the potassium transporter KUP8, a member of the high-affinity K uptake family KUP/HAK/KT. Atkup8-2 mutants, which are less affected as measured by seedling root length under HMmix conditions, showed a resistant phenotype with respect to WT seedlings which, despite their delayed growth, are able to develop true leaves at levels similar to those under control conditions. Adult Atkup8-2 plants had a higher fresh weight than WT plants, a resistant phenotype under HMmix stress conditions and lower levels of oxidative damage. KUP8 did not appear to be involved in heavy metal or macro- and micro-nutrient uptake and translocation from roots to leaves, as total concentrations of these elements were similar in both Atkup8-2 and WT plants. However, alterations in cellular K homeostasis in this mutant cannot be ruled out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!