Objectives: To investigate the value of full-field digital mammography-based deep learning (DL) in predicting malignancy of Breast Imaging Reporting and Data System (BI-RADS) 4 microcalcifications.

Methods: A total of 384 patients with 414 pathologically confirmed microcalcifications (221 malignant and 193 benign) were randomly allocated into the training, validation, and testing datasets (272/71/71 lesions) in this retrospective study. A combined DL model was developed incorporating mammography and clinical variables. Model performance was evaluated by using areas under the receiver operating characteristic curve (AUC) and compared with the clinical model, stand-alone DL image model, and BI-RADS approach. The predictive performance for malignancy was also compared between the combined model and human readers (2 juniors and 2 seniors).

Results: The combined DL model demonstrated favorable AUC, sensitivity, and specificity of 0.910, 85.3%, and 91.9% in predicting BI-RADS 4 malignant microcalcifications in the testing dataset, which outperformed the clinical model, DL image model, and BI-RADS with AUCs of 0.799, 0.841, and 0.804, respectively. The combined model achieved non-inferior performance as senior radiologists (p = 0.860, p = 0.800) and outperformed junior radiologists (p = 0.155, p = 0.029). The diagnostic performance of two junior radiologists was improved after artificial intelligence assistance with AUCs increased to 0.854 and 0.901 from 0.816 (p = 0.556) and 0.773 (p = 0.046), while the interobserver agreement was improved with a kappa value increased to 0.843 from 0.331.

Conclusions: The combined deep learning model can improve the malignancy prediction of BI-RADS 4 microcalcifications in screening mammography and assist junior radiologists to achieve better performance, which can facilitate clinical decision-making.

Key Points: • The combined deep learning model demonstrated high diagnostic power, sensitivity, and specificity for predicting malignant BI-RADS 4 mammographic microcalcifications. • The combined model achieved similar performance with senior breast radiologists, while it outperformed junior breast radiologists. • Deep learning could improve the diagnostic performance of junior radiologists and facilitate clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-020-07659-yDOI Listing

Publication Analysis

Top Keywords

deep learning
20
combined model
20
junior radiologists
16
model
13
learning model
12
mammography clinical
8
malignancy prediction
8
prediction bi-rads
8
bi-rads microcalcifications
8
clinical model
8

Similar Publications

MultiChem: predicting chemical properties using multi-view graph attention network.

BioData Min

January 2025

Department of Computer Science, Hanyang University, Seoul, Republic of Korea.

Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.

View Article and Find Full Text PDF

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled.

View Article and Find Full Text PDF

Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.

View Article and Find Full Text PDF

Purpose: The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!