Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs.

J Mater Chem B

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Published: February 2021

Intestinal epithelial cells are the primary biological barriers for orally administrated nano-formulations and the delivered protein drugs. Thereinto, besides the cellular uptake, intracellular trafficking pathway and the related exocytosis are of great importance to the trans-epithelial transport of drug-loaded NPs. Herein, inspired by the physiological functions of Golgi apparatus for secreting proteins out of cells, Golgi localization-related amino acid l-cysteine (Cys) was modified on the surface of NPs to see whether and how this modification could guide the Golgi pathway-related transport and facilitate the exocytosis of drug-loaded NPs. Meanwhile, cell-penetrating peptide octa-arginine (R8) was co-modified to increase the cellular uptake. The proportion of R8 and Cys modification was explored to get the best effect of endocytosis and exocytosis of NPs. As a result, 25%R8 + 75%Cys NPs with most Cys modification showed efficient transcytosis with the highest transcytosis/endocytosis ratio (0.87). Interestingly, exocytosis mechanism studies indicated that they trafficked through the Golgi secretory pathway and bypassed lysosomes due to Cys modification. The detailed Golgi position mechanism studies further suggested that the thiol group from Cys was important for mediating Golgi transport. In particular, competitive inhibition studies demonstrated that Cys-modified NPs were more conducive to their exocytosis after being transported through the Golgi secretory pathway. We proved that cargos transported via Golgi apparatus tended to be trafficked out of the cells and avoid degradation, which contributed to the transcytosis of 25%R8 + 75%Cys NPs in vitro. Inspiringly, compared with unmodified NPs, 25%R8 + 75%Cys NPs also exhibited promoted intestinal penetration and oral absorption in vivo. Oral delivery of insulin-loaded 25%R8 + 75%Cys NPs showed stronger hypoglycemic effects in diabetic rats. In summary, this work provides a strategy for complying with the physiological functions of Golgi apparatus for secreting to facilitate the exocytosis of NPs, thus further improving the oral absorption of loaded protein drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb02848gDOI Listing

Publication Analysis

Top Keywords

golgi apparatus
16
25%r8 75%cys
16
75%cys nps
16
physiological functions
12
functions golgi
12
oral absorption
12
protein drugs
12
cys modification
12
nps
11
golgi
10

Similar Publications

Background: Dynamins are defined as a group of molecules with GTPase activity that play a role in the formation of endocytic vesicles and Golgi apparatus. Among them, DNM3 has gained recognition in oncology for its tumor suppressor role. Based on this, the aim of this study is to investigate the effects of the DNM3 gene in patients diagnosed with pancreatic cancer using bioinformatics databases.

View Article and Find Full Text PDF

Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.

View Article and Find Full Text PDF

Background: Hailey-Hailey disease (HHD), a genetic blistering disease, is caused by a mutation in a calcium transporter protein in the Golgi apparatus encoded by the gene. Clinically, HHD is characterized by flaccid vesicles, blisters, erosions, fissures, and maceration mainly in intertriginous regions. Some patients remain refractory to conventional treatments.

View Article and Find Full Text PDF

Newly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively.

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!