Nanoparticle transformation from ZnO to ZnS through anion exchange with di--butyl disulphide.

Dalton Trans

School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.

Published: February 2021

The chemical transformation from zinc oxide (ZnO) to zinc sulphide (ZnS), using di-tert-butyl disulphide (TBDS) as a highly reactive sulphur precursor, is demonstrated herein. Through anion exchange, we investigate the phase and morphological changes associated with the nanoparticle (NP) transformation of ZnO to ZnS using TBDS. The Zn-O-S alloy was not formed through the anion exchange reaction, only the ZnO and ZnS phases were detected. The NPs were transformed from a solid sphere to a hollow structure, induced by the nanoscale Kirkendall effect. Even with the dramatic shape and phase changes occurring in the NPs, the Zn oxidation state remained as 2+ throughout the 2 h anion exchange reaction. In addition, trioctylphosphine (TOP), a soft base ligand, increased the anion exchange reaction rate, facilitating the reaction with TBDS. Furthermore, anion exchange with elemental sulphur required a longer reaction time (3 h) than that with TBDS (2 h). Consequently, this study offers not only insights into phase and morphological transformations by anion exchange, but also the advantages of utilizing TBDS as a sulphur precursor.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt03940cDOI Listing

Publication Analysis

Top Keywords

anion exchange
28
zno zns
12
exchange reaction
12
nanoparticle transformation
8
transformation zno
8
sulphur precursor
8
phase morphological
8
anion
7
exchange
7
tbds
5

Similar Publications

Efficient adsorption behavior of Fe-based ternary magnetic LDHs for naphthalene acetic acid: Role of Fe element.

Environ Res

January 2025

School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

Naphthalene acetic acid (NAA) is an auxin plant growth regulator (PGR) and widely used to regulate the growth process of plants. As excessive NAA enter the environment, it damages the ecological environment and endangers human life and health. Layered bimetallic hydroxides (LDHs) are widely used for the adsorption of pollutants due to their large surface area and excellent structural properties.

View Article and Find Full Text PDF

Adeno-associated viruses (AAV) are among the leading vectors for in vivo gene therapy. The purification of AAV remains a bottleneck as it typically requires multiple individual process steps, often resulting in product loss and high costs. Current downstream processes are usually serotype-specific and rely primarily on expensive affinity resins.

View Article and Find Full Text PDF

Coordination of inorganic disulfide species to ferric N-acetyl microperoxidase 11.

Biochem Biophys Res Commun

January 2025

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina. Electronic address:

The interest in chemical interactions between inorganic sulfur species and heme compounds has grown significantly in recent years due to their physiological relevance. The model system ferric N-acetyl microperoxidase 11 (NAcMP11Fe) enables the exploration of the mechanistic aspects of the interaction between the ferric heme group and binding sulfur ligands, without the constraints imposed by a protein matrix and the stabilizing effects of distal amino acids. In this study, we investigated the coordination of disulfane (HSSH) and its conjugate base hydrodisulfide (HSS) to NAcMP11Fe.

View Article and Find Full Text PDF

NiFe-based arrays with manganese dioxide enhance chloride blocking for durable alkaline seawater oxidation.

J Colloid Interface Sci

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China. Electronic address:

Seawater splitting is increasingly recognized as a promising technique for hydrogen production, while the lack of good electrocatalysts and detrimental chlorine chemistry may hinder further development of this technology. Here, the interfacial engineering of manganese dioxide nanoparticles decorated on NiFe layered double hydroxide supported on nickel foam (MnO@NiFe LDH/NF) is reported, which works as a robust catalyst for alkaline seawater oxidation. Density functional theory calculations and experiment findings reveal that MnO@NiFe LDH/NF can selectively enrich OH and repel Cl in oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!