AI Article Synopsis

Article Abstract

Study Question: Can markers of human endometrial hypoxia be detected at menstruation in vivo?

Summary Answer: Our in vivo data support the presence of hypoxia in menstrual endometrium of women during physiological menstruation.

What Is Known Already: Current evidence from animal models and human in vitro studies suggests endometrial hypoxia is present at menstruation and drives endometrial repair post menses. However, detection of human endometrial hypoxia in vivo remains elusive.

Study Design, Size, Duration: We performed a prospective case study of 16 women with normal menstrual bleeding.

Participants/materials, Setting, Methods: Reproductively aged female participants with a regular menstrual cycle underwent objective measurement of their menstrual blood loss using the alkaline haematin method to confirm a loss of <80 ml per cycle. Exclusion criteria were exogenous hormone use, an intrauterine device, endometriosis or fibroids >3 cm. Participants attended for two MRI scans; during days 1-3 of menstruation and the early/mid-secretory phase of their cycle. The MRI protocol included dynamic contrast-enhanced MRI and T2* quantification. At each visit, an endometrial sample was also collected and hypoxia-regulated repair factor mRNA levels (ADM, VEGFA, CXCR4) were quantified by RT-qPCR.

Main Results And The Role Of Chance: Women had reduced T2* during menstrual scans versus non-menstrual scans (P = 0.005), consistent with menstrual hypoxia. Plasma flow (Fp) was increased at menstruation compared to the non-menstrual phase (P = 0.0005). Laboratory findings revealed increased ADM, VEGF-A and CXCR4 at menstruation on examination of paired endometrial biopsies from the menstrual and non-menstrual phase (P = 0.008; P = 0.03; P = 0.009). There was a significant correlation between T2* and these ex vivo hypoxic markers (P < 0.05).

Limitations, Reasons For Caution: This study examined the in vivo detection of endometrial hypoxic markers at specific timepoints in the menstrual cycle in women with a menstrual blood loss <80 ml/cycle and without significant uterine structural abnormalities. Further research is required to determine the presence of endometrial hypoxia in those experiencing abnormal uterine bleeding with and without fibroids/adenomyosis.

Wider Implications Of The Findings: Heavy menstrual bleeding (HMB) is a common, debilitating condition. Understanding menstrual physiology may improve therapeutics. To our knowledge, this is the first in vivo data supporting the presence of menstrual hypoxia in the endometrium of women with normal menstrual bleeding. If aberrant in those with HMB, these non-invasive tests may aid diagnosis and facilitate personalized treatments for HMB.

Study Funding/competing Interest(s): This work was funded by Wellbeing of Women grant RG1820, Wellcome Trust Fellowship 209589/Z/17/Z and undertaken in the MRC Centre for Reproductive Health, funded by grants G1002033 and MR/N022556/1. H.O.D.C. has clinical research support for laboratory consumables and staff from Bayer AG and provides consultancy advice (but with no personal remuneration) for Bayer AG, PregLem SA, Gedeon Richter, Vifor Pharma UK Ltd, AbbVie Inc; Myovant Sciences GmbH. H.O.D.C. receives royalties from UpToDate for articles on abnormal uterine bleeding.

Trial Registration Number: N/A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970728PMC
http://dx.doi.org/10.1093/humrep/deaa379DOI Listing

Publication Analysis

Top Keywords

endometrial hypoxia
16
human endometrial
12
markers human
8
hypoxia detected
8
non-menstrual phase
8
endometrial
7
menstrual
7
hypoxia
6
menstruation
6
vivo
5

Similar Publications

A Study on Endometrial Polyps Recurrence Post-Hysteroscopic Resection: Identification of Influencing Factors and Development of a Predictive Model.

Ann Ital Chir

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, 322000 Yiwu, Zhejiang, China.

Aim: This study aimed to explore influencing factors and develop a predictive model of endometrial polyps (EP) recurrence after hysteroscopic resection.

Methods: This retrospective study included 180 patients who underwent hysteroscopic resection for EP between January 2021 to December 2023. The patients were divided into a modeling group (n = 135) and a validation group (n = 45) in a 3:1 ratio.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP), a known endocrine-disrupting chemical, is a plasticizer found in many common consumer products. High levels of DEHP exposure have been linked to adverse pregnancy outcomes, yet little is known about how it affects human uterine functions. We previously reported that the estrogen-regulated transcription factor hypoxia-inducible factor 2 alpha (HIF2α) promotes the expression of Rab27b, which controls the trafficking and secretion of extracellular vesicles (EVs).

View Article and Find Full Text PDF

Endometrial cancer (EC) is a worldwide gynecologic malignancies, with a remarking increase of incidence and mortality rates in recent years. Growing evidence indicates that glucose metabolism reprogramming is the most representative metabolic signature of tumor cells and exploring its modulatory function in EC development will promote identifying potential EC therapeutic targets. IGFBP2 is an insulin-like growth factor binding protein which is closely associated with a variety of metabolic diseases.

View Article and Find Full Text PDF

Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.

View Article and Find Full Text PDF

The PKM2/HIF-1α Axis is Involved in the Pathogenesis of Endometriosis via TGF-β1 under Endometrial Polyps.

Front Biosci (Landmark Ed)

December 2024

Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.

Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.

Methods: EP samples were collected from patients with and without endometriosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!