Electrophilically reactive drug metabolites are implicated in many adverse drug reactions. In this mechanism-termed bioactivation-metabolic enzymes convert drugs into reactive metabolites that often conjugate to nucleophilic sites within biological macromolecules like proteins. Toxic metabolite-product adducts induce severe immune responses that can cause sometimes fatal disorders, most commonly in the form of liver injury, blood dyscrasia, or the dermatologic conditions toxic epidermal necrolysis and Stevens-Johnson syndrome. This study models four of the most common metabolic transformations that result in bioactivation: quinone formation, epoxidation, thiophene sulfur-oxidation, and nitroaromatic reduction, by synthesizing models of metabolism and reactivity. First, the metabolism models predict the formation probabilities of all possible metabolites among the pathways studied. Second, the exact structures of these metabolites are enumerated. Third, using these structures, the reactivity model predicts the reactivity of each metabolite. Finally, a feedfoward neural network converts the metabolism and reactivity predictions to a bioactivation prediction for each possible metabolite. These bioactivation predictions represent the joint probability that a metabolite forms and that this metabolite subsequently conjugates to protein or glutathione. Among molecules bioactivated by these pathways, we predicted the correct pathway with an AUC accuracy of 89.98%. Furthermore, the model predicts whether molecules will be bioactivated, distinguishing bioactivated and nonbioactivated molecules with 81.06% AUC. We applied this algorithm to withdrawn drugs. The known bioactivation pathways of alclofenac and benzbromarone were identified by the algorithm, and high probability bioactivation pathways not yet confirmed were identified for safrazine, zimelidine, and astemizole. This bioactivation model-the first of its kind that jointly considers both metabolism and reactivity-enables drug candidates to be quickly evaluated for a toxicity risk that often evades detection during preclinical trials. The XenoSite bioactivation model is available at http://swami.wustl.edu/xenosite/p/bioactivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716317 | PMC |
http://dx.doi.org/10.1021/acs.chemrestox.0c00417 | DOI Listing |
BMC Public Health
January 2025
Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China.
Background: As the global epidemic of obesity fuels metabolic conditions, the burden of nonalcoholic fatty liver disease (NAFLD) will become enormous. Abundant studies revealed the association between high body mass index (BMI) and NAFLD but overlooked the BMI patterns across life stages. We aimed to explore how BMI trajectories over age relate to NAFLD.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.
Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.
Dig Dis Sci
January 2025
Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China.
Background And Aims: Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD.
Methods: Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database.
Sci Rep
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!