A growing literature indicates that untreated wastewater from leaky sewers stands among major sources of pollution to water resources of urban systems. Despite that, the quantification and allocation of sewer exfiltration are often restricted to major pipe areas where inspection data are available. In large-scale urban models, the emission from sewer exfiltration is either neglected (particularly from private sewers) or represented by simplified fixed values, and as such its contribution to the overall urban emission remains questionable. This study proposes an extended model framework which incorporates sewer exfiltration pathway in the catchment model for a better justified pollution control and management of urban systems at a nationwide scale. Nutrient emission from urban areas is quantified by means of the Modelling of Nutrient Emissions in River Systems (MONERIS) model. Exfiltration is estimated for public and private sewers of different age groups in Germany using the verified methods at local to city scales, upscaling techniques, and expert knowledge. Results of this study suggest that the average exfiltration rate is likely to be less than 0.01 L/s per km, corresponding to approximately 1 mm/m/year of wastewater discharge to groundwater. Considering the source and age factors, the highest rate of exfiltration is defined in regions with significant proportions of public sewers older than 40 years. In regions where public sewers are mostly built after 1981, the leakage from private sewers can be up two times higher than such from public sewers. Overall, sewer exfiltration accounts for 9.8% and 17.2% of nitrate and phosphate loads from urban systems emitted to the environment, which increases to 11.2% and 19.5% in the case of no remediation scenario of projected defective sewer increases due to ageing effects. Our results provide a first harmonized quantification of potential leakage losses in urban wastewater systems at the nationwide scale and reveal the importance of rehabilitation planning of ageing sewer pipes in public and private sewer systems. The proposed model framework, which incorporates important factors for urban sewer managers, will allow further targeting the important data need for validating the approach at the regional and local scales in order to support better strategies for the long-term nutrient pollution control of large urban wastewater systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610960 | PMC |
http://dx.doi.org/10.1007/s11356-021-12440-9 | DOI Listing |
Environ Res
December 2024
Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, PR China. Electronic address:
At the end of 2022, a sudden policy shift in China triggered an unprecedented COVID-19 outbreak that led to a dramatic increase in the consumption of antipyretics. In this study, the occurrence of the two most commonly used antipyretics (ibuprofen and paracetamol) and their metabolites were analyzed in the wastewater of nine major cities in China, covering the periods before, during, and after the policy change. The remarkable surge after the policy change for ibuprofen and paracetamol reached 67 times (in Nanning) and 311 times (in Lanzhou) compared to pre-pandemic levels, respectively.
View Article and Find Full Text PDFEnviron Monit Assess
November 2023
Chair of Hydrogeology and Hydrochemistry, Institute of Geology, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Straße 12, 09599, Freiberg, Germany.
Leaky urban drainage networks (UDNs) exfiltrating wastewater can contaminate aquifers. Detailed knowledge on spatiotemporal distributions of water-dissolved, sewer-borne contaminants in groundwater is essential to protect urban aquifers and to optimize monitoring systems. We evaluated the effect of UDN layouts on the spreading of sewer-borne contaminants in groundwater using a parsimonious approach.
View Article and Find Full Text PDFSci Total Environ
May 2023
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
Numerous elements, such as the degree of sewer degeneration, hydraulics, and geological conditions, influence the extent to which sewage pollutes the unsaturated zones of urban. The present study discussed the influence of sewer exfiltration on the urban unsaturated zone, using nitrogen from domestic sewage as a representative contaminant in combination with experiments, literature studies, modeling and sensitivity analysis. The study shows that soils with high sand content exhibit high permeability and strong nitrification capacity, and groundwater is more susceptible to contamination with nitrate.
View Article and Find Full Text PDFSci Total Environ
March 2022
Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada; Canada Research Chair in Microbial Contaminant Dynamics in Source Waters, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada.
In urban areas served by separate sewerage systems, illicit connections to the storm drain system from residences or commercial establishments are frequent whether these misconnections were made accidentally or deliberately. As a result, untreated and contaminated wastewater enters into storm sewers leading to pollution of receiving waters and non-compliance with water quality standards. Typical procedures for detecting illicit connections to the storm sewer system are time consuming and expensive, especially in a highly urbanised area.
View Article and Find Full Text PDFJ Hazard Mater
June 2021
Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan.
In April 2016, a series of earthquakes (M 7.3 on the Japan Meteorological Agency scale) occurred in Kumamoto, Japan causing serious damage to underground sewerage networks. In this study, we evaluated sewer exfiltration in groundwater in the Kumamoto area after the earthquakes by using multiple tracers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!