Bat coronavirus (CoV) RaTG13 shares the highest genome sequence identity with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among all known coronaviruses, and also uses human angiotensin converting enzyme 2 (hACE2) for virus entry. Thus, SARS-CoV-2 is thought to have originated from bat. However, whether SARS-CoV-2 emerged from bats directly or through an intermediate host remains elusive. Here, we found that bat ACE2 (RaACE2) is an entry receptor for both SARS-CoV-2 and RaTG13, although the binding of RaACE2 to the receptor-binding domain (RBD) of SARS-CoV-2 is markedly weaker than that of hACE2. We further evaluated the receptor activities of ACE2s from additional 16 diverse animal species for RaTG13, SARS-CoV, and SARS-CoV-2 in terms of S protein binding, membrane fusion, and pseudovirus entry. We found that the RaTG13 spike (S) protein is significantly less fusogenic than SARS-CoV and SARS-CoV-2, and seven out of sixteen different ACE2s function as entry receptors for all three viruses, indicating that all three viruses might have broad host rages. Of note, RaTG13 S pseudovirions can use mouse, but not pangolin ACE2, for virus entry, whereas SARS-CoV-2 S pseudovirions can use pangolin, but not mouse, ACE2 enter cells efficiently. Mutagenesis analysis revealed that residues 484 and 498 in RaTG13 and SARS-CoV-2 S proteins play critical roles in recognition of mouse and human ACE2s. Finally, two polymorphous bat ACE2s showed different susceptibilities to virus entry by RaTG13 and SARS-CoV-2 S pseudovirions, suggesting possible coevolution. Our results offer better understanding of the mechanism of coronavirus entry, host range, and virus-host coevolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816560PMC
http://dx.doi.org/10.1016/j.scib.2021.01.011DOI Listing

Publication Analysis

Top Keywords

ratg13 sars-cov-2
12
virus entry
12
sars-cov-2
11
bat ace2
8
bat coronavirus
8
ratg13
8
entry sars-cov-2
8
sars-cov sars-cov-2
8
entry ratg13
8
three viruses
8

Similar Publications

Cross-Species Susceptibility of Emerging Variants of SARS-CoV-2 Spike.

Genes (Basel)

October 2024

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Background: The continuous evolution of SARS-CoV-2 and the emergence of novel variants with numerous mutations have heightened concerns surrounding the possibility of cross-species transmission and the establishment of natural animal reservoirs for the virus, but the host range of emerging SARS-CoV-2 variants has not been fully explored yet.

Methods: We employed an in vitro model comprising VSV∆G* pseudotyped viruses bearing SARS-CoV-2 spike proteins to explore the plausible host range of SARS-CoV-2 emerging variants.

Results: The overall host tropism of emerging SARS-CoV-2 variants are consistent with that of the SARS-CoV-2 wuhan-hu-1 strain with minor difference.

View Article and Find Full Text PDF

The animal origin of SARS-CoV-2 remains elusive, lacking a plausible evolutionary narrative that may account for its emergence. Its spike protein resembles certain segments of BANAL-236 and RaTG13, two bat coronaviruses considered possible progenitors of SARS-CoV-2. Additionally, its spike contains a furin motif, a common feature of rodent coronaviruses.

View Article and Find Full Text PDF

Development of potent and broad-spectrum drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains one of the top priorities, especially in the cases of the emergence of mutant viruses and inability of current vaccines to prevent viral transmission. In this study, we have generated a novel membrane fusion-inhibitory lipopeptide IPB29, which is currently under clinical trials; herein, we report its design strategy and preclinical data. First, we surprisingly found that IPB29 with a rigid linker between the peptide sequence and lipid molecule had greatly improved α-helical structure and antiviral activity.

View Article and Find Full Text PDF

Untangling the Evolution of the Receptor-Binding Motif of SARS-CoV-2.

J Mol Evol

June 2024

Departamento de Ingeniería Genética, Cinvestav Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36824, Irapuato, Gto., Mexico.

The spike protein determines the host-range specificity of coronaviruses. In particular, the Receptor-Binding Motif in the spike protein from SARS-CoV-2 contains the amino acids involved in molecular recognition of the host Angiotensin Converting Enzyme 2. Therefore, to understand how SARS-CoV-2 acquired its capacity to infect humans it is necessary to reconstruct the evolution of this important motif.

View Article and Find Full Text PDF

Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination.

Cell Discov

February 2024

Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China.

The current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum-neutralizing activity against diverse coronaviruses. Through single B-cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!