Chondroitin sulfates are implicated in epidermal biology, but functional significance of chondroitin sulfates remains unclear. Here, we report that chondroitin 6-sulfate is important for the maintenance of epidermal homeostasis. Mice deficient in chondroitin 6-O-sulfotransferase-1 (C6st-1), which is involved in biosynthesis of chondroitin 6-sulfate, exhibited keratinocyte hyperproliferation and impaired skin permeability barrier function. Chondroitin 6-sulfate directly interacted with the EGF receptor and negatively controlled ligand-induced EGF receptor signaling. Normal function of hyperproliferative C6st-1-knockout mouse-derived keratinocytes was rescued by treatment with exogenous chondroitin 6-sulfate. Epidermal hyperplasia, induced using imiquimod, was more severe in C6st-1-knockout mice than in C6st-1 wild-type mice. Taken together, these findings indicate that chondroitin 6-sulfate represses keratinocyte proliferation in normal skin, and that the expression level of C6st-1 may be associated with susceptibility to psoriasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835381PMC
http://dx.doi.org/10.1038/s42003-020-01618-5DOI Listing

Publication Analysis

Top Keywords

chondroitin 6-sulfate
24
chondroitin
8
6-sulfate represses
8
represses keratinocyte
8
keratinocyte proliferation
8
chondroitin sulfates
8
egf receptor
8
6-sulfate
5
proliferation mouse
4
mouse skin
4

Similar Publications

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation.

View Article and Find Full Text PDF

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.

View Article and Find Full Text PDF

The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!