Illuminating cellular formaldehyde.

Nat Commun

Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.

Published: January 2021

AI Article Synopsis

  • Zhu and collaborators developed a genetically encoded sensor for detecting formaldehyde in cells and tissues.
  • This new tool could significantly advance research on formaldehyde by providing better insights into this metabolite.
  • The sensor allows for the study of formaldehyde in live structures, which has been challenging until now.

Article Abstract

Writing in Nature communications, Zhu and collaborators reported the development of a genetically encoded sensor for the detection of formaldehyde in cells and tissues. This tool has great potential to transform formaldehyde research; illuminating a cellular metabolite that has remained elusive in live structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835344PMC
http://dx.doi.org/10.1038/s41467-020-20758-0DOI Listing

Publication Analysis

Top Keywords

illuminating cellular
8
cellular formaldehyde
4
formaldehyde writing
4
writing nature
4
nature communications
4
communications zhu
4
zhu collaborators
4
collaborators reported
4
reported development
4
development genetically
4

Similar Publications

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

The European catfish (Silurus glanis) is an important species with high economic value, and its growing demand has led to intensive farming practices for it. However, this species is increasingly challenged by parasitic infections, particularly from a specific gill monopisthocotylan parasite called Thaparocleidus vistulensis. To establish effective management strategies, it is crucial to comprehend the fundamental environmental variables that could influence the reproductive and survival behavior of T.

View Article and Find Full Text PDF

Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!