NH-SCR (selective catalytic reduction) is important process for removal of NOx. However, water vapor included in exhaust gases critically inhibits the reaction in a low temperature range. Here, we report bulk W-substituted vanadium oxide catalysts for NH-SCR at a low temperature (100-150 °C) and in the presence of water (~20 vol%). The 3.5 mol% W-substituted vanadium oxide shows >99% (dry) and ~93% (wet, 5-20 vol% water) NO conversion at 150 °C (250 ppm NO, 250 ppm NH, 4% O, SV = 40000 mL h g). Lewis acid sites of W-substituted vanadium oxide are converted to Brønsted acid sites under a wet condition while the distribution of Brønsted and Lewis acid sites does not change without tungsten. NH species adsorbed on Brønsted acid sites react with NO accompanied by the reduction of V sites at 150 °C. The high redox ability and reactivity of Brønsted acid sites are observed for bulk W-substituted vanadium oxide at a low temperature in the presence of water, and thus the catalytic cycle is less affected by water vapor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835234PMC
http://dx.doi.org/10.1038/s41467-020-20867-wDOI Listing

Publication Analysis

Top Keywords

vanadium oxide
20
acid sites
20
w-substituted vanadium
16
presence water
12
low temperature
12
brønsted acid
12
water vapor
8
bulk w-substituted
8
250 ppm
8
lewis acid
8

Similar Publications

Aiming to reduce sulfur oxides emission in the atmosphere, the International Maritime Organization developed regulations on shipping that came into effect in 2020. The new rules incentivized many owners to install scrubber systems on thousands of ships. However, the overall environmental implications of scrubbers is a controversial subject, largely due to the release of acids, metals, and chemicals in the oceans and impact on marine life.

View Article and Find Full Text PDF

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Remote epitaxy and exfoliation of vanadium dioxide via sub-nanometer thick amorphous interlayer.

Nat Commun

January 2025

Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, People's Republic of China.

The recently emerged remote epitaxy technique, utilizing 2D materials (mostly graphene) as interlayers between the epilayer and the substrate, enables the exfoliation of crystalline nanomembranes from the substrate, expanding the range of potential device applications. However, remote epitaxy has been so far applied to a limited range of material systems, owing to the need of stringent growth conditions to avoid graphene damaging, and has therefore remained challenging for the synthesis of oxide nanomembranes. Here, we demonstrate the remote epitaxial growth of an oxide nanomembrane (vanadium dioxide, VO) with a sub-nanometer thick amorphous interlayer, which can withstand potential sputtering-induced damage and oxidation.

View Article and Find Full Text PDF

Visible light-driven copper vanadate/biochar nanocomposite for heterogeneous photocatalysis degradation of tetracycline: Performance, mechanism, and application of machine learning.

Environ Res

December 2024

Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530006, China. Electronic address:

Water pollution caused by antibiotics is considered a major and growing issue. To address this challenge, high-performance copper vanadate-based biochar (CuVO/BC) nanocomposite photocatalysts were prepared to develop an efficient visible light-driven photocatalytic system for the remediation of tetracycline (TC) contaminated water. The effects of photocatalyst mass, solution pH, pollutant concentration, and common anions on the TC degradation were investigated in detail.

View Article and Find Full Text PDF

Amorphous organic-hybrid vanadium oxide for near-barrier-free ultrafast-charging aqueous zinc-ion battery.

Nat Commun

December 2024

Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China.

Fast-charging metal-ion batteries are essential for advancing energy storage technologies, but their performance is often limited by the high activation energy (E) required for ion diffusion in solids. Addressing this challenge has been particularly difficult for multivalent ions like Zn. Here, we present an amorphous organic-hybrid vanadium oxide (AOH-VO), featuring one-dimensional chains arranged in a disordered structure with atomic/molecular-level pores for promoting hierarchical ion diffusion pathways and reducing Zn interactions with the solid skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!