In this study, the effects of static and multi-pulsed mild-intensity high hydrostatic pressure (HHP) treatments (60 or 100 MPa, ~23 °C) on the extractability and accumulation of phenolics and carotenoids in whole carrots were evaluated. HHP treatments were applied for the time needed to reach the desired pressure (come-up-time, CUT) either as a single pulse or multi-pulse (2P, 3P, and 4P). Likewise, a single sustained treatment (5 min) applied at 60 or 100 MPa was evaluated. Individual carotenoids, free and bound phenolics were quantified after HHP treatment and subsequent storage (48 h, 15 °C). As an immediate HHP response, phenolic extractability increased by 66.65% and 80.77% in carrots treated with 3P 100 MPa and 4P 60 MPa, respectively. After storage, CUT 60 MPa treatment accumulated free (163.05%) and bound (36.95%) phenolics. Regarding carotenoids, total xanthophylls increased by 27.16% after CUT 60 MPa treatment, whereas no changes were observed after storage. Results indicate that HHP processing of whole carrots at mild conditions is a feasible innovative tool to enhance the nutraceutical properties of whole carrots by increasing their free and bound phenolic content while maintaining carotenoid levels. HHP treated carrots can be used as a new functional food or as raw material for the production of food and beverages with enhanced levels of nutraceuticals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911246 | PMC |
http://dx.doi.org/10.3390/foods10020219 | DOI Listing |
Int Angiol
December 2024
Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.
View Article and Find Full Text PDFFood Chem X
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
Legume proteins have recently gained significant interest in the food industry for their eco-friendliness and nutritional qualities. Research shows that the replacement of specific animal protein sources with legume proteins presents sustainability and economic benefit. Nonetheless, legume proteins frequently exhibit inferior functional properties and palatability compared to animal proteins.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil.
Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Tea Science, Yunnan Agricultural University, Kunming 650500, China.
This research prepared gelatinized waxy maize starch (WMS), low-amylose maize starch (LAS), and high-amylose maize starch (HAS) with different glutathione (GSH) content (5, 10, and 15 %) using high hydrostatic pressure (HHP) at 600 MPa. Scanning electron microscopy (SEM) revealed damaged morphology of WMS and complete swelled granules of LAS and HAS with different degree of gelatinization (DG) values, 92.86, 59.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, USA.
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!