Characterization of Ultrafine Particles and VOCs Emitted from a 3D Printer.

Int J Environ Res Public Health

Department of Occupational and Process Safety, Faculty of Safety Engineering, VSB-Technical University of Ostrava, CZ708 00 Ostrava, Czech Republic.

Published: January 2021

Currently, widely available three-dimensional (3D) printers are very popular with the public. Previous research has shown that these printers can emit ultrafine particles (UFPs) and volatile organic compounds (VOCs). Several studies have examined the emissivity of filaments from 3D printing, except glycol modified polyethylene terephthalate (PETG) and styrene free co-polyester (NGEN) filaments. The aim of this study was to evaluate UFP and VOC emissions when printing using a commonly available 3D printer (ORIGINAL PRUSA i3 MK2 printer) using PETG and NGEN. The concentrations of UFPs were determined via measurements of particle number concentration and size distribution. A thermal analysis was carried out to ascertain whether signs of fiber decomposition would occur at printing temperatures. The total amount of VOCs was determined using a photoionization detector, and qualitatively analyzed via gas chromatography-mass spectrometry. The total particle concentrations were 3.88 × 10 particles for PETG and 6.01 × 10 particles for NGEN. VOCs at very low concentrations were detected in both filaments, namely ethylbenzene, toluene, and xylene. In addition, styrene was identified in PETG. On the basis of our results, we recommend conducting additional measurements, to more accurately quantify personal exposure to both UFPs and VOCs, focusing on longer exposure as it can be a source of potential cancer risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908560PMC
http://dx.doi.org/10.3390/ijerph18030929DOI Listing

Publication Analysis

Top Keywords

ultrafine particles
8
vocs
5
characterization ultrafine
4
particles
4
particles vocs
4
vocs emitted
4
emitted printer
4
printer currently
4
currently three-dimensional
4
three-dimensional printers
4

Similar Publications

Background: Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive.

Objective: We investigated the associations between exposure to particulate matter (PM and PM), black carbon (BC), nitrogen dioxide (NO), ozone (O), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study.

Methods: We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III.

View Article and Find Full Text PDF

The synergies of air quality monitoring program: Information disclosure and pollution control.

J Environ Manage

January 2025

Chongqing Environmental Consulting Co., Ltd., CISDI Group Co., Ltd., Chongqing, China. Electronic address:

To deal with the increasingly severe climate crisis and environmental pollution, China launched a nationwide real-time air quality monitoring program in three batches, a milestone moment in its environmental governance history. Using the time-varying difference-in-differences model, this study explores the synergies of this program across 284 cities from 2009 to 2019. The findings are as follows: (1) With environmental information disclosed, the national air quality monitoring program can reduce the outdoor fine particulate matter concentration by an overall effect of 3.

View Article and Find Full Text PDF

Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling.

Int J Hyg Environ Health

January 2025

Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.

View Article and Find Full Text PDF

Ambient coarse particulate matter pollution and hospital admissions for schizophrenia.

Schizophr Res

January 2025

Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China. Electronic address:

Objective: To investigate the association between ambient coarse particulate matter (PM) pollution and risk of acute schizophrenia episodes.

Methods: A time-stratified case-crossover study with a two-stage analytical approach was conducted to investigate the association between ambient PM pollution and schizophrenia admissions (an indicator for acute schizophrenia episodes) across 259 Chinese cities of prefecture-level or above during 2013-2017. A conditional logistic regression model was constructed to estimate city-specific changes in hospital admissions for schizophrenia associated with per interquartile range (IQR) increase in ambient PM, and the overall associations were obtained by pooling the city-specific associations using the random-effects model.

View Article and Find Full Text PDF

Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects.

Chem Biol Interact

January 2025

Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!