Hemp Fiber Reinforced Red Mud/Fly Ash Geopolymer Composite Materials: Effect of Fiber Content on Mechanical Strength.

Materials (Basel)

Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.

Published: January 2021

Novel hemp fiber reinforced geopolymer composites were fabricated. The matrix was a new geopolymer based on a mixture of red mud and fly ash. Chopped, randomly oriented hemp fibers were used as reinforcement. The mechanical properties of the geopolymer composite, such as diametral tensile (DTS) (or Brazilian tensile) strength and compressive strength (CS), were measured. The geopolymer composites reinforced with 9 vol.% and 3 vol.% hemp fiber yielded average DTS values of 5.5 MPa and average CS values of 40 MPa. Scanning electron microscopy (SEM) studies were carried out to evaluate the microstructure and fracture surfaces of the composites. The results indicated that the addition of hemp fiber is a promising approach to improve the mechanical strength as well as to modify the failure mechanism of the geopolymer, which changed from brittle to "pseudo-ductile."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865735PMC
http://dx.doi.org/10.3390/ma14030511DOI Listing

Publication Analysis

Top Keywords

hemp fiber
16
fiber reinforced
8
geopolymer composite
8
mechanical strength
8
geopolymer composites
8
values mpa
8
geopolymer
6
hemp
5
reinforced red
4
red mud/fly
4

Similar Publications

Microstructural Characteristics of Cellulosic Fiber-Reinforced Cement Composite.

Materials (Basel)

December 2024

Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.

The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.

View Article and Find Full Text PDF

Inflammation is the critical component of neuropathic pain; therefore, this study aimed to assess the potential anti-inflammatory effects of L. extracts in a vincristine-induced model of neuropathic pain. The effects of different doses (5.

View Article and Find Full Text PDF

Rare-Earth Pretreatment Improves Performance of Reactive Dye Argazol Navy Blue on Banana-Fiber Fabric.

Molecules

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, Qiqihar 161006, China.

At present, the use of conventional reactive dyes on banana-fiber fabric leads to the problem of excessive salt consumption, which is not conducive to environmental protection. In this experimental study, rare-earth-pretreated banana-fiber fabric was dyed with the reactive dye Argazol Navy Blue. The rare-earth pretreatment was carried out to reduce the level of salt consumption, improve dyeing and fixation rates, and reduce the treatment burden of printing and dyeing wastewater.

View Article and Find Full Text PDF

Clarification of Bio-Degumming Enzymes Based on a Visual Analysis of the Hemp Roving Structure.

Polymers (Basel)

December 2024

Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.

View Article and Find Full Text PDF

A Study on the Preparation and Performance of Ultrafine Powder Made of Industrial Hemp Degumming Residue.

Polymers (Basel)

December 2024

School of Textile Science and Engineering, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan 430200, China.

Industrial hemp, one of the most widely available and extensively produced varieties, generates a substantial amount of waste in the form of hemp cellulose. This study uses a recycling method combining crushing and acid treatment to convert leftover hemp fiber into ultrafine powder. A scanning electron microscope (SEM), an atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR), and X-ray diffraction (XRD) were used to examine the morphology of acid-treated hemp fiber heated to 200 °C and crushed into powder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!