Absence of metabotropic glutamate receptor homolog(s) accelerates acetylcholine neurotransmission in Caenorhabditis elegans.

Neurosci Lett

Center for Preclinical and Translational Medicine Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India. Electronic address:

Published: February 2021

Glutamate (Glu) and Acetylcholine (ACh), are excitatory neurotransmitters, acting through ionotropic (iR) and metabotropic receptors (mR). Importantly, both neurotransmitters and their signalling are impaired in the prevalent neurodegenerative disease-Alzheimer disease (AD). Glu and its signalling cascade's influence on ACh-neurotransmission (NT) are sparsely understood. The mGluRs coupled to G-protein signalling acting through PI3K cascade (GrpI) or inhibition of adenylate cyclase-cAMP cascade (GrpII and GrpIII) brings about long-lasting structural/functional changes. These complexities are challenging to decipher. Here, we report that human/mouse mGluRs when compared with their Caenorhabditis elegans homologs, MGL-1-3 showed overall of homology of ∼31-39 %. Phylogeneitc analysis revealed homology of MGL-2 to GrpI, MGL-3 with Grp1 &II and GRM6 of GrpIII and MGL-1, a low homology that falls between GrpI & GrpII. Then, alteration of ACh-NT in C. elegans loss-of-function mutants of mgl-1, mgl-2, mgl-3, PI3K (age-1) and iGluR (NMDA)(nmr-1) was estimated by well-established acute aldicarb (Ald), that increases ACh at synapse, and levamisole (Lev) (postsynaptic activation of levamisole sensitive iAChR) induced time-dependent paralysis assays. Surprisingly, all of them were hypersensitive to Ald and Lev compared to wildtype (in percentage), namely, mgl-1 -17, 54; mgl-2 - 7.2, 24; mgl-3 -52, 64; age-1 - 27, 32; nmr-1- 24, 48; respectively. Of the three, mgl-3 contributes to maximal overall acceleration of ACh-NT. Adenylate cyclase, acy-1 gain-of-function mutant showed less hypersensitivity, Ald - 7% and Lev- 25 %. Together, Glu receptors and signalling cascades are altering ACh-NT permanently, thus establishing the interplay between them thereby provide potential drug targets to be considered for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.135666DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
mgl-2 mgl-3
8
absence metabotropic
4
metabotropic glutamate
4
glutamate receptor
4
receptor homologs
4
homologs accelerates
4
accelerates acetylcholine
4
acetylcholine neurotransmission
4
neurotransmission caenorhabditis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!