Membrane fusion is considered relevant in countless scientific areas and biotechnological processes, ranging from vital life events to biomedicine, pharmaceuticals, and materials engineering, among others. In this study, we employed hydrophobic oleic acid (OA)-coated magnetite (FeO) nanoparticles (MNP-OA) as a platform to induce the fusion of 1-palmitoyl-2-oleoyl--glycero-3-phosphatidylcholine liposomes [large unilamellar vesicles (LUVs)] in a colloidal dispersion. This fusion was monitored through dynamic light scattering, turbidimetry, and fluorescence assay using the well-known Tb/dipicolinic acid (DPA) complex formation assay. MNP-OA have shown to be able to induce fusion with the mixing of liposomal inner content with direct dependence on the nanoparticle concentration added to the LUVs. Moreover, changes in the permeability of the liposome bilayer, upon the addition of MNP-OA to liposomes, were evaluated by studying the leakage of carboxyfluorescein and of the co-encapsulated Tb/DPA complex. These assays allowed us to determine that MNP-OA did not significantly modify liposome permeability during the fusion process. Transmission electron microscopy and confocal microscopy revealed that MNP-OA remained embedded in the lipid bilayer without producing membrane rupture, liposome deformation, or destruction. In addition, we evaluated the effect of applying a low-intensity magnetic field to the LUVs/MNP-OA system and observed that the nanoparticles considerably increased their fusogenic activity under this external stimulus, as well as they are capable of responding to low magnetic fields of around 0.45 mT. These results revealed the potential of hydrophobic magnetic nanoparticles, stabilized with OA, to act as a fusogen, thus representing a valuable tool for biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c03291 | DOI Listing |
Autophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFJ Adv Res
January 2025
State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China. Electronic address:
Introduction: Infections stemming from multidrug-resistant bacteria present a substantial threat to public health today. Discovering or synthesizing novel compounds is crucial to alleviate this pressing situation.
Objective: The main purpose of this study is to verify the antibacterial activity of LTX-315 and explore its primary action mode.
Colloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:
Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.
View Article and Find Full Text PDFNature
January 2025
Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
The oestrogen receptor (ER or ERα), a nuclear hormone receptor that drives most breast cancer, is commonly activated by phosphorylation at serine 118 within its intrinsically disordered N-terminal transactivation domain. Although this modification enables oestrogen-independent ER function, its mechanism has remained unclear despite ongoing clinical trials of kinase inhibitors targeting this region. By integration of small-angle X-ray scattering and nuclear magnetic resonance spectroscopy with functional studies, we show that serine 118 phosphorylation triggers an unexpected expansion of the disordered domain and disrupts specific hydrophobic clustering between two aromatic-rich regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!