Objective: To investigate phenotypic and molecular characteristics of a consanguineous family with autosomal-recessive, polyarticular, juvenile isiopathic arthriris (JIA) with extra-articular manifestations, including renal amyloidosis and Crohn's disease, associated with a novel homozygous truncating variant in LACC1.
Methods: Whole exome sequencing (WES) or targeted Sanger verification were performed in 15 participants. LACC1 expression and cytokine array were analysed in patient-derived and CRISPR/Cas9-generated LACC1-knockout macrophages (Mϕ).
Results: A homozygous truncating variant (p.Glu348Ter) in LACC1 was identified in three affected and one asymptomatic family member, and predicted harmful by causing premature stop of the LACC1 protein sequences, and by absence from ethnically-matched controls and public variation databases. Expression studies in patient-derived macrophages (Mϕ) showed no endogenous p.Glu348Ter-LACC1 RNA transcription or protein expression, compatible with nonsense-mediated mRNA decay. WES analysis in the asymptomatic homozygous subject for p. Glu348Ter-LACC1 detected an exclusive heterozygous variant (p.Arg928Gln) in complement component C5. Further complement activity analysis suggested a protective role for the p.Arg928Gln-C5 variant as a phenotypic modifier of LACC1-associated disease. Finally, cytokine profile analysis indicated increased levels of pro-inflammatory cytokines in LACC1-disrupted as compared with wild-type Mϕ.
Conclusions: Our findings reinforce the role of LACC1 disruption in autosomal-recessive JIA, extend the clinical spectrum and intra-familial heterogeneity of the disease-associated phenotype, indicate a modulatory effect of complement factor C5 on phenotypic severity, and suggest an inhibitory role for wild-type LACC1 on pro-inflammatory pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rheumatology/keab017 | DOI Listing |
Front Genet
December 2024
Bioinformatics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy.
Introduction: Infantile hypotonia with psychomotor retardation and characteristic facies-1 (IHPRF1, MIM#615419) is a rare, birth onset, autosomal recessive disorder caused by homozygous or compound heterozygous truncating variants in gene (MIM#611549) resulting in a loss-of-function effect.
Methods: We enrolled a new IHPRF1 patients' cohort in the framework of an international multicentric collaboration study. Using specialized pathogenicity predictors and structural analyses, we assessed the mechanistic consequences of the deleterious variants retrieved on NALCN structure and function.
Hum Genet
December 2024
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied.
View Article and Find Full Text PDFHum Genome Var
December 2024
Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
DSG2, encoding desmoglein-2, is one of the causative genes of arrhythmogenic cardiomyopathy. We previously identified a homozygous DSG2 p.Arg119Ter stop-gain variant in a patient with juvenile-onset cardiomyopathy and advanced biventricular heart failure.
View Article and Find Full Text PDFMov Disord
December 2024
Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, Istanbul, Turkey.
Background: ATX-FGF/SCA27A has been exclusively associated with heterozygous variants in the FGF14 gene, presenting with postural tremor, slowly progressive cerebellar ataxia, and psychiatric and behavioral disturbances.
Objectives: This study describes the first case of ATX-FGF/SCA27A linked to a biallelic frameshift variant in the FGF14 gene.
Methods: Whole-exome sequencing (WES) was conducted using the Illumina NovaSeq 6000 platform, and the identified variant was confirmed using Sanger sequencing.
BMJ Case Rep
December 2024
Paediatrics, Topiwala National Medical College & B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
Diagnosing hereditary spastic paraplegia (HSP) in paediatric patients can be challenging, especially when there is no positive family history. Children are often initially misdiagnosed with cerebral palsy due to the gradual progression of the disease and non-specific neuroimaging findings, despite the absence of perinatal insult. This misdiagnosis can prevent timely prenatal diagnosis, limiting the ability to make informed decisions about the pregnancy and to plan early interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!