A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seasonal variation of nitrogen biogeochemical processes constrained by nitrate dual isotopes in cascade reservoirs, Southwestern China. | LitMetric

The increase of affected river reaches by reservoirs has drastically disturbed the original hydrological conditions, and subsequently influenced the nutrient biogeochemistry in the aquatic system, particularly in the cascade reservoir system. To understand the seasonal variation of nitrogen (N) behaviors in cascade reservoirs, hydrochemistry and nitrate dual isotopes (δN-NO and δO-NO) were conducted in a karst watershed (Wujiang River) in southwest China. The results showed that NO-N accounted for almost 90% of the total dissolved nitrogen (TDN) concentration with high average concentration 3.8 ± 0.4 mg/L among four cascade reservoirs. Higher N concentration (4.0 ± 0.8 mg/L) and larger longitudinal variation were observed in summer than in other seasons. The relationship between the variation of NO-N and dual isotopes in the profiles demonstrated that nitrification was dominated transformation, while assimilation contributed significantly in the epilimnion during spring and summer. The high dissolved oxygen concentration in the present cascade reservoirs system prevented the occurrence of N depletion processes in most of the reservoirs. Denitrification occurred in the oldest reservoir during winter with a rate ranging from 18 to 28%. The long-term record of surface water TDN concentration in reservoirs demonstrated an increase from 2.0 to 3.6 mg/L during the past two decades (~ 0.1 mg/L per year). The seasonal nitrate isotopic signature and continuously increased fertilizer application demonstrated that chemical fertilizer contribution significantly influenced NO-N concentration in the karst cascade reservoirs. The research highlighted that the notable N increase in karst cascade reservoirs could influence the aquatic health in the region and further investigations were required.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-12505-9DOI Listing

Publication Analysis

Top Keywords

cascade reservoirs
24
dual isotopes
12
reservoirs
9
seasonal variation
8
variation nitrogen
8
nitrate dual
8
tdn concentration
8
concentration mg/l
8
karst cascade
8
cascade
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!