The detection of γ-rays at room temperature with high-energy resolution using semiconductors is one of the most challenging applications. The presence of even the smallest amount of defects is sufficient to kill the signal generated from γ-rays which makes the availability of semiconductors detectors a rarity. Lead halide perovskite semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties and are poised to strongly impact applications in photoelectric conversion/detection. Here we demonstrate for the first time that large size single crystals of the all-inorganic perovskite CsPbCl semiconductor can function as a high-performance detector for γ-ray nuclear radiation at room temperature. CsPbCl is a wide-gap semiconductor with a bandgap of 3.03 eV and possesses a high effective atomic number of 69.8. We identified the two distinct phase transitions in CsPbCl, from cubic (-3) to tetragonal (4/) at 325 K and finally to orthorhombic () at 316 K. Despite crystal twinning induced by phase transitions, CsPbCl crystals in detector grade can be obtained with high electrical resistivity of ∼1.7 × 10 Ω·cm. The crystals were grown from the melt with volume over several cubic centimeters and have a low thermal conductivity of 0.6 W m K. The mobilities for electron and hole carriers were determined to ∼30 cm/(V s). Using photoemission yield spectroscopy in air (PYSA), we determined the valence band maximum at 5.66 ± 0.05 eV. Under γ-ray exposure, our Schottky-type planar CsPbCl detector achieved an excellent energy resolution (∼16% at 122 keV) accompanied by a high figure-of-merit hole mobility-lifetime product (3.2 × 10 cm/V) and a long hole lifetime (16 μs). The results demonstrate considerable defect tolerance of CsPbCl and suggest its strong potential for γ-radiation and X-ray detection at room temperature and above.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c12254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!