Quasi- quantification of Cu(II) ions in Cu-SSZ-13 catalyst by an NH temperature-programmed reduction method.

Chem Commun (Camb)

The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.

Published: February 2021

A quasi-operando NH3 temperature-programmed reduction method (NH3-TPR), with N2:Cu = 1:1, is developed to quantify total Cu(ii) ions in Cu-SSZ-13 quenched from SCR-relevant reactions, and its accuracy is confirmed by in situ EPR. [Cu(OH)]+-Z and Cu2+-2Z can be further distinguished by NH3 reduction temperatures, and their different reducibility in SCR is revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc07346fDOI Listing

Publication Analysis

Top Keywords

cuii ions
8
ions cu-ssz-13
8
temperature-programmed reduction
8
reduction method
8
quasi- quantification
4
quantification cuii
4
cu-ssz-13 catalyst
4
catalyst temperature-programmed
4
method quasi-operando
4
quasi-operando nh3
4

Similar Publications

This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.

View Article and Find Full Text PDF

Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment.

View Article and Find Full Text PDF

Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.

View Article and Find Full Text PDF

Some specific anthraquinone derivatives (AQs) are known to be used widely as effective chemotherapeutic agents in the treatment of cancer. However, their fundamental shortcoming is the high rate of cardiotoxicity observed in treated patients, which is thought to be caused by the increase in production of reactive oxygen species (ROS) catalyzed by iron and copper. The development of improved AQs and other anticancer drugs with enhanced efficacy but reduced toxicity remains a high priority.

View Article and Find Full Text PDF

Characterization of the Interaction of Human γS Crystallin with Metal Ions and Its Effect on Protein Aggregation.

Biomolecules

December 2024

LABRMN, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico.

Cataracts are diseases characterized by the opacity of the ocular lens and the subsequent deterioration of vision. Metal ions are one of the factors that have been reported to induce crystallin aggregation. For HγS crystallin, several equivalent ratios of Cu(II) promote protein aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!