A method of quantitative evaluation of lymphocytes' sensitivity to the antiproliferative effect of the alkylating drugs has been developed. Chlorbutin, mafosfamide (Asta Z 7654) and "active" metabolites of cyclophosphamide were studied. This research allowed to distinguish more sensitive strains (DBA/2 and C57BL/6) and those with low sensitivity (BALB/c and CC57BR). These differences do not depend on proliferation reaction, neither on the type of alkylating drugs nor haplotypes H-2.

Download full-text PDF

Source

Publication Analysis

Top Keywords

alkylating drugs
8
[sensitivity splenic
4
splenic cells
4
cells mouse
4
mouse strains
4
strains antiproliferative
4
antiproliferative action
4
action alkylating
4
alkylating compounds]
4
compounds] method
4

Similar Publications

Background: With recent advances in clinical practice, including the use of reduced-toxicity conditioning regimens and innovative approaches such as ex vivo TCRαβ/CD19 depletion of haploidentical donor stem cells or post-transplant cyclophosphamide (PTCY), hematopoietic stem cell transplantation (HSCT) has emerged as a curative treatment option for a growing population of patients with inborn errors of immunity (IEI). However, despite these promising developments, graft failure (GF) remains a significant concern associated with HSCT in these patients. Although a second HSCT is the only established salvage therapy for patients who experience GF, there are no uniform, standardized strategies for performing these second transplants.

View Article and Find Full Text PDF

Alkylated DNA repair by a novel HhH-GPD family protein from Crenarchaea.

Nucleic Acids Res

January 2025

College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.

HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis.

View Article and Find Full Text PDF

An overview of BAP1 biological functions and current therapeutics.

Biochim Biophys Acta Rev Cancer

January 2025

Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA. Electronic address:

BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss of functional variants in BAP1 is associated with a tumor predisposition syndrome with at least four cancers; uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!