Background: Peri-implant marginal bone loss is influenced by the interaction between tissues and the implant–abutment complex. The implant–abutment connection geometry is considered to be one of the factors that most affects peri-implant bone remodelling. Purpose: The primary purpose was to compare the clinical and radiographical differences between implants sharing the same macrogeometry but with two different connections. The secondary aims were to measure implant success and survival rate, primary and secondary stability, and the correlation between changes in marginal bone level and clinical variables. Additionally, a neural network was developed and tested to anticipate the impact of the insertion torque curve on marginal bone loss. Materials and methods: Patients requiring at least two implants in the posterior region were randomly divided into two groups. The implants presented the same micro- and macrotopography with different internal connections, conical standard (CS) and internal hex (IH). Upon implant surgery (T0), insertion torque, implant stability (implant stability quotient values were recorded by resonance frequency analysis), soft tissue height and the amount of keratinised gingiva were assessed. Stability was remeasured at the time of prosthetic connection (stage-two surgery) using a one-abutment one-time protocol and a fully digital workflow. At 6 months and 1 year after implant loading, periodontal parameters were assessed and periapical radiographs were taken. To study the differences between the two groups and the different variables, paired t test and generalised estimating equations models were adopted. Cluster analysis was used to assess the correlation between torque insertion/clinical profiles and changes in marginal bone level. Results: A total of 33 patients (17 men, 16 women, mean age 67.4 ± 14.5 years) were included in the study. No dropouts were reported. Fifty-three implants (26 CS and 27 IH) were inserted in the maxilla, and 15 (8 CS and 7 IH) in the mandible. No implants failed. Marginal bone loss at 6 months after prosthetic loading was 0.33 ± 0.34 mm for CS and 0.43 ± 0.37 mm for IH (P = 0.125), and after 1 year was 0.48 ± 0.18 mm for CS and 0.57 ± 0.24 mm for IH. A statistically significant difference between the implant stabilty quotient values for the test and control groups was demonstrated at T0 (P = 0.03) and at stage-two surgery (P = 0.000122). The generalised estimating equations model showed that soft tissue height (P = 0.012), keratinised gingiva (P = 0.05) and insertion torque (P = 0.042) had a significant effect on marginal bone loss, while the other variables did not play a statistically significant role. The neural network showed good sensitivity, accuracy, precision and specificity. Conclusions: The present research showed that different implant–abutment connections with the same implant macrogeometry have a significant effect on marginal bone loss. Better outcomes were observed in the CS group compared to the IH group. Marginal bone loss was found to be influenced by different individual and clinical factors.
Download full-text PDF |
Source |
---|
J Oral Biosci
January 2025
Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan. Electronic address:
Objectives: This study investigated the effects of thread design on the soft and hard tissues around implants in rat maxillary peri-implantitis-like lesions.
Methods: Fourteen, 9-week-old, female Wistar rats were used in this study. Two types of grade IV titanium tissue-level implants with a standard V-shape and buttress threads were prepared (control and test implants, respectively).
J Clin Med
January 2025
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, 06490 Ankara, Turkey.
: This study aimed to compare the effects of surgically assisted rapid palatal expansion (SARPE) techniques and their combinations on the stresses (von Mises, maximum principal, and minimum principal) and displacements that occur in the maxilla, facial bones, and maxillary teeth using three-dimensional finite element analysis (FEA). : SARPE was simulated using seven different osteotomy techniques. The FEA models were simulated with a combination of various osteotomies, including midpalatal and lateral osteotomies, lateral osteotomy with a step, and separation of the pterygomaxillary junction.
View Article and Find Full Text PDFJ Clin Med
January 2025
Comprehensive Dentistry for Adults and Gerodontology, Faculty of Dentistry, University of Seville, 41009 Seville, Spain.
Transalveolar sinus floor elevation (TSFE) is a surgical technique for the placement of dental implants in patients with reduced height of the maxillary posterior alveolar bone. This study aims to demonstrate the clinical outcomes of TSFE using the minimal invasive sinus elevation (MISE) technique in partially and totally edentulous maxillary patients. This prospective clinical study followed STROBE guidelines.
View Article and Find Full Text PDF: EnBloc resections of bone tumors of the spine are very demanding as the target to achieve a tumor-free margin specimen (sometimes impossible due to the extracompartimental tumor extension) is sometimes conflicting with the integrity of neurological functions and spine stability. : The surgical treatment of a huge multi-level chordoma of the thoracic spine with unusual extension is reported. Anteriorly, the tumor widely invaded the mediastinum and displaced the aorta; on the left side, it expanded in the subpleuric region; posteriorly, it was uncommonly distant 13 mm from the posterior wall.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Maxillofacial Surgery and Implantology, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania.
The aim of this systematic review was to assess clinical trials on the efficiency of sinus lift techniques with and without bone grafting in the atrophic posterior maxilla. This article was written under the PRISMA and the Cochrane Handbook for Systematic Reviews of Interventions guidelines. PubMed, Scopus, and Web of Science databases were electronically searched until December 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!