Binding of particles and spores to surfaces is a natural phenomenon which is a prerequisite for biofilm formation. Perpendicular force measurements were carried out using atomic force microscopy cantilevers modified with a polystyrene or glass sphere. The attachment of the spheres was tested against glass, PVAc, p(γ-MPSco-MMA), p(γ-MPS-co-LMA), PMMAsc, and silicon surfaces. The polystyrene spheres demonstrated less varied force and strength of attachment measurement to the surfaces than the glass spheres. The force of attachment of the polystyrene spheres was also influenced by mobility of the co-polymer surfaces. Surface wettability did not affect the force of polystyrene or glass sphere attachment. The force measurements of the non-biological spheres were similar to those seen in biological systems with fungal conidia, and this was due to their size, shape, and binding energies. The use of non-biological systems may present an insight into understanding the fundamentals of more complex biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808926 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101962 | DOI Listing |
ACS Appl Bio Mater
January 2025
Physics Department, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
This study investigates the functionalization of gold-coated magnetoelastic sensors with thionine molecules, focusing on resonance frequency shifts. The functionalization process was characterized by using Raman spectroscopy and analyzed via scanning electron microscopy and atomic force microscopy, revealing the progressive formation of molecular clusters over time. Our results demonstrate that longer functionalization time leads to saturation of surface coverage and cluster formation, impacting the sensor's resonance frequency shifts.
View Article and Find Full Text PDFChempluschem
January 2025
Izmir University of Economics: Izmir Ekonomi Universitesi, Department of Mechanical Engineering, Sakarya Cad. No: 156, 35330, Izmir, TURKEY.
Accurate determination of dielectric properties and surface characteristics of two-dimensional (2D) perovskite nanosheets, produced by chemical exfoliation of layered perovskites, is often hindered by exfoliation agent residues such as tetrabutylammonium (TBA). This study investigates the effect of ultraviolet (UV) light exposure duration on the removal of TBA residues from 2D Ca2NaNb4O13- nanosheets deposited on silicon substrates via Langmuir-Blodgett method using atomic force microscopy (AFM). Nanoscale adhesion forces between silicon AFM tips and nanofilms exposed to UV light for 3, 12, 18, and 24 hours were measured.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2025
Institut für Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany.
Nat Mach Intell
January 2025
Engineering Laboratory, University of Cambridge, Cambridge, UK.
Molecular dynamics simulation is an important tool in computational materials science and chemistry, and in the past decade it has been revolutionized by machine learning. This rapid progress in machine learning interatomic potentials has produced a number of new architectures in just the past few years. Particularly notable among these are the atomic cluster expansion, which unified many of the earlier ideas around atom-density-based descriptors, and Neural Equivariant Interatomic Potentials (NequIP), a message-passing neural network with equivariant features that exhibited state-of-the-art accuracy at the time.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Engineering, Ulster University, York Street, Belfast, Northern Ireland, BT15 1AP, UK.
Recent advancements in atomic force microscopy (AFM) have enabled detailed exploration of materials at the molecular and atomic levels. These developments, however, pose a challenge: the data generated by microscopic and spectroscopic experiments are increasing rapidly in both size and complexity. Extracting meaningful physical insights from these datasets is challenging, particularly for multilayer heterogeneous nanoscale structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!