Background: The modulating mechanism of fatty acids on angiotensin-converting enzyme production (ACE) in human adipocytes is still elusive. Diet-induced regulation of the renin angiotensin system is thought to be involved in obesity and hypertension, and several previous studies have used mouse cell lines such as 3T3-L1 to investigate this. This study was carried out in human subcutaneous adipocytes for better understanding of the mechanism.
Methods: Human adipose stem cells were isolated from subcutaneous adipose tissue biopsies collected from four patients during bariatric surgery and differentiated into mature adipocytes. The mRNA expression and the activity of ACE were measured under different stimuli in cell cultures.
Results: Arachidonic acid (AA) decreased ACE mRNA expression and ACE activity in a dose-dependent manner while palmitic acid had no effect. The decrease of ACE by 100 µM AA was reversed by the addition of 5 µM nuclear factor-κB (NF-κB) inhibitor. Furthermore, when the production of 20-hydroxyeicosatetraenoic acid, a metabolite of AA, was stopped by the specific inhibitor HET0016 (10 µM) in the culture media, the effect of AA was blocked.
Conclusions: This study indicated that AA can decrease the expression and activity of ACE in cultured human adipocytes, via an inflammatory NF-κB-dependent pathway. Blocking 20-hydroxyeicosatetraenoic acid attenuated the ACE-decreasing effects of AA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812212 | PMC |
http://dx.doi.org/10.21037/atm-20-7514 | DOI Listing |
Fish Shellfish Immunol
December 2024
Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:
A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.
View Article and Find Full Text PDFMetabolites
December 2024
Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
Background/objectives: Milk is one of the main sources of nutrition in people's daily diet, but the fat in milk raises health concerns in consumers. Here, we aimed to elucidate the impact of Buffalo milk and Holstein cow milk consumption on blood lipid health through metabolomics analysis.
Methods: Golden hamsters were administered Murrah Buffalo milk (BM) or Holstein cow milk (HM), and the body weight and serum lipid indicators were tested and recorded.
Metabolites
November 2024
Department of Intensive Care Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo City 113-8510, Japan.
A dysregulated metabolism has been studied as a key aspect of the COVID-19 pathophysiology, but its longitudinal progression in severe cases remains unclear. In this study, we aimed to investigate metabolic dysregulation over time in patients with severe COVID-19 requiring mechanical ventilation (MV). In this single-center, prospective, observational study, we obtained 236 serum samples from 118 adult patients on MV in an ICU.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. Electronic address:
Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy "STO-MS" to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry.
View Article and Find Full Text PDFSe Pu
January 2025
School of Public Health, Xiamen University, Xiamen 361102, China.
Arsenic is a ubiquitous environmental toxin that can affect normal physiological processes. Although the health impacts of arsenic have been investigated, its influence on hepatic metabolism in obese pregnant women and the underlying mechanisms remain unclear. Multi-omics analysis, including metabolomics and proteomics, can improve the understanding of arsenic-induced hepatotoxicity in obese pregnant women.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!