Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815940PMC
http://dx.doi.org/10.3389/fchem.2020.612728DOI Listing

Publication Analysis

Top Keywords

farnesyl pyrophosphate
12
inhibitors farnesyl
8
pyrophosphate synthase
8
phosphonate bisphosphonate
4
bisphosphonate inhibitors
4
pyrophosphate
4
pyrophosphate synthases
4
synthases structure-guided
4
structure-guided perspective
4
perspective phosphonates
4

Similar Publications

Molecular insights into a distinct class of terpenoid cyclases.

Nat Commun

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.

Article Synopsis
  • Terpenoid cyclases (TCs) are crucial for producing diverse natural compounds, with the BcABA3 enzyme from the fungus Botrytis cinerea representing a unique type that deviates from typical TCs.
  • Crystal structures of BcABA3 and related enzymes show they have an all-α-helix fold and interact with specific substrates through a unique binding mechanism.
  • Findings suggest significant potential for exploring more uncharacterized terpenoids synthesized by these enzymes, highlighting the need for further research in this area.
View Article and Find Full Text PDF

Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.

View Article and Find Full Text PDF

Molecular Insight into the Catalytic Mechanism of the Sesquiterpene Cyclase BcABA3.

J Agric Food Chem

January 2025

CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

BcABA3 is an unusual sesquiterpene synthase that lacks the conserved DDxxD and DTE/NSE motifs. Despite this, it can catalyze the conversion of farnesyl diphosphate to 2Z,4E-α-ionylideneethane. We used structure prediction, multiscale simulations, and site-directed mutagenesis experiments to investigate BcABA3 and its catalytic mechanism.

View Article and Find Full Text PDF

Prenylation consists of the modification of proteins with either farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP) at a cysteine near the C-terminus of target proteins to generate thioether-linked lipidated proteins. In recent work, metabolic labeling with alkyne-containing isoprenoid analogues including C15AlkOPP has been used to identify prenylated proteins and track their levels in different diseases. Here, a systematic study of the impact of isoprenoid length on proteins labeled with these probes was performed.

View Article and Find Full Text PDF
Article Synopsis
  • Panax ginseng, a commonly used herbal medicine in Asia, relies on its roots and rhizomes, which contain ginsenosides, the main active compounds that enhance its adaptability to ecological stress.
  • A study involved applying water spray to create a short-term water stress scenario for 5-year-old P. ginseng roots, revealing significant increases in oxidative stress indicators and enzyme activities linked to ginsenoside production.
  • The water stress treatment resulted in notable boosts in various ginsenosides (e.g., Rg1 and Rb1) and a 40.1% increase in total saponins, highlighting the potential for water management to enhance the medicinal properties of P. ginseng.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!